Optimal Steiner Trees Under Node and Edge Privacy Conflicts

In this work, we suggest concepts and solution methodologies for a series of strategic network design problems that find application in highly data-sensitive industries, such as, for instance, the high-tech, governmental, or military sector. Our focus is on the installation of widely used cost-efficient tree-structured communication infrastructure. As base model we use the well-known Steiner … Read more

Mathematical Models and Approximate Solution Approaches for the Stochastic Bin Packing Problem

We consider the (single-stage) stochastic bin packing problem (SBPP) which is based on a given list of items the sizes of which are represented by stochastically independent random variables. The SBPP requires to determine the minimum number of unit capacity bins needed to pack all the items, such that for each bin the probability of … Read more

The Bipartite Boolean Quadric Polytope with Multiple-Choice Constraints

We consider the bipartite boolean quadric polytope (BQP) with multiple-choice constraints and analyse its combinatorial properties. The well-studied BQP is defined as the convex hull of all quadric incidence vectors over a bipartite graph. In this work, we study the case where there is a partition on one of the two bipartite node sets such … Read more

A Branch-Cut-and-Price Algorithm for the Time-Dependent Electric Vehicle Routing Problem with Time Windows

The adoption of electric vehicles (EVs) within last-mile deliveries is considered one of the key transformations towards more sustainable logistics. The inclusion of EVs introduces new operational constraints to the models such as a restricted driving range and the possibility to perform recharges in-route. The discharge of the typical batteries is complex and depends on … Read more

SDP-based bounds for the Quadratic Cycle Cover Problem via cutting plane augmented Lagrangian methods and reinforcement learning

We study the Quadratic Cycle Cover Problem (QCCP), which aims to find a node-disjoint cycle cover in a directed graph with minimum interaction cost between successive arcs. We derive several semidefinite programming (SDP) relaxations and use facial reduction to make these strictly feasible. We investigate a nontrivial relationship between the transformation matrix used in the … Read more

The Non-Stop Disjoint Trajectories Problem

Consider an undirected network with traversal times on its edges and a set of commodities with connection requests from sources to destinations and release dates. The non-stop disjoint trajectories problem is to find trajectories that fulfill all requests, such that the commodities never meet. In this extension to the \NP-complete disjoint paths problem, trajectories must … Read more

A Column Generation Based Heuristic for the Split Delivery Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is one of the most studied variants of routing problems. We consider the Split Delivery VRPTW (SDVRPTW), an extension in which customers can be visited multiple times, if advantageous. While this additional flexibility can result in significant cost reductions, it also results in additional modeling and computational … Read more

Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling

Over the last few years, optimization models for the energy-efficient operation of railway traffic have received more and more attention, particularly in connection with timetable design. In this work, we study the effect of load management via timetabling. The idea is to consider trains as time-flexible consumers in the railway power supply network and to … Read more

A branch-and-cut algorithm for the Edge Interdiction Clique Problem

Given a graph G and an interdiction budget k, the Edge Interdiction Clique Problem (EICP) asks to find a subset of at most k edges to remove from G so that the size of the maximum clique, in the interdicted graph, is minimized. The EICP belongs to the family of interdiction problems with the aim … Read more

Matchings, hypergraphs, association schemes, and semidefinite optimization

We utilize association schemes to analyze the quality of semidefinite programming (SDP) based convex relaxations of integral packing and covering polyhedra determined by matchings in hypergraphs. As a by-product of our approach, we obtain bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman. We determine … Read more