Memory-Aware Parallelized RLT3 for Solving Quadratic Assignment Problems

We present a coarse-grain (outer-loop) parallel implementation of RLT1/2/3 (Level 1, 2, and 3 Reformulation and Linearization Technique—in that order) bound calculations for the QAP within a branch-and-bound procedure. For a search tree node of size S, each RLT3 and RLT2 bound calculation iteration is parallelized S ways, with each of S processors performing O(S5) … Read more

VERTICES OF SPECTRAHEDRA ARISING FROM THE ELLIPTOPE, THE THETA BODY, AND THEIR RELATIVES

Utilizing dual descriptions of the normal cone of convex optimization problems in conic form, we characterize the vertices of semidefinite representations arising from Lovász theta body, generalizations of the elliptope, and related convex sets. Our results generalize vertex characterizations due to Laurent and Poljak from the 1990’s. Our approach also leads us to nice characterizations … Read more

A Hierarchy of Subgraph Projection-Based Semidefinite Relaxations for some NP-Hard Graph Optimization Problems

Many important NP-hard combinatorial problems can be efficiently approximated using semidefinite programming relaxations. We propose a new hierarchy of semidefinite relaxations for classes of such problems that based on graphs and for which the projection of the problem onto a subgraph shares the same structure as the original problem. This includes the well-studied max-cut and … Read more

A Primal Heuristic for MINLP based on Dual Information

We present a novel heuristic algorithm to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network’s capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the … Read more

Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming

In the \emph{incremental knapsack problem} ($\IK$), we are given a knapsack whose capacity grows weakly as a function of time. There is a time horizon of $T$ periods and the capacity of the knapsack is $B_t$ in period $t$ for $t = 1, \ldots, T$. We are also given a set $S$ of $N$ items … Read more

On Blocking and Anti-Blocking Polyhedra in Infinite Dimensions

We consider the natural generalizations of blocking and anti-blocking polyhedra in infinite dimensions, and study issues related to duality and integrality of extreme points for these sets. Using appropriate finite truncations, we give conditions under which complementary slackness holds for primal-dual pairs of the infi nite linear programming problems associated with infi nite blocking and anti-blocking polyhedra. … Read more

Minimum concave cost flows in capacitated grid networks

We study the minimum concave cost flow problem over a two-dimensional grid network (CFG), where one dimension represents time ($1\le t\le T$) and the other dimension represents echelons ($1\le l\le L$). The concave function over each arc is given by a value oracle. We give a polynomial-time algorithm for finding the optimal solution when the … Read more

A Practical Iterative Algorithm for the Art Gallery Problem using Integer Linear Programming

In the last few decades, the search for exact algorithms for known NP-hard geometric problems has intensified. Many of these solutions make use of Integer Linear Programming (ILP) modeling and rely on state of the art solvers, to be able to find optimal solutions for large instances in a matter of minutes. In this work, … Read more

Bin Packing and Related Problems: General Arc-flow Formulation with Graph Compression

We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems — including multi-constraint variants — by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without … Read more

Exact Algorithms for Arc and Node Routing Problems

Routing problems stand among the hardest combinatorial problems to find high quality bounds or to prove new optimal solutions. In this thesis, we tackle the Capacitated Arc Routing Problem (CARP) and the Generalized Vehicle Routing Problem (GVRP). For both problems, there are a set of customers spread over a given graph, where each customer has … Read more