Lower Bounds for the Quadratic Minimum Spanning Tree Problem Based on Reduced Cost Computation

The Minimum Spanning Tree Problem (MSTP) is one of the most known combinatorial optimization problems. It concerns the determination of a minimum edge-cost subgraph spanning all the vertices of a given connected graph. The Quadratic Minimum Spanning Tree Problem (QMSTP) is a variant of the MST whose cost considers also the interaction between every pair … Read more

A Tight Lower Bound for the Adjacent Quadratic Assignment Problem

In this paper we address the Adjacent Quadratic Assignment Problem (AQAP) which is a variant of the QAP where the cost coefficient matrix has a particular structure. Motivated by strong lower bounds obtained by applying Reformulation Linearization Technique (RLT) to the classical QAP, we propose two special RLT representations for the problem. The first is … Read more

Tight extended formulations for independent set

This paper describes tight extended formulations for independent set. The first formulation is for arbitrary independence systems and has size $O(n+\mu)$, where $\mu$ denotes the number of inclusion-wise maximal independent sets. Consequently, the extension complexity of the independent set polytope of graphs is $O(1.4423^n)$. The size $O(2^\tw n)$ of the second extended formulation depends on … Read more

On a nonconvex MINLP formulation of the Euclidean Steiner tree problems in n-space

The Euclidean Steiner Tree Problem in dimension greater than two is notoriously difficult. The successful methods for exact solution are not based on mathematical-optimization methods — rather, they involve very sophisticated enumeration. There are two types of mathematical-optimization formulations in the literature, and it is an understatement to say that neither scales well enough to … Read more

Discretization vertex orders in distance geometry

When a weighted graph is an instance of the Distance Geometry Problem (DGP), certain types of vertex orders (called discretization orders) allow the use of a very efficient, precise and robust discrete search algorithm (called Branch-and-Prune). Accordingly, finding such orders is critically important in order to solve DGPs in practice. We discuss three types of … Read more

On the exact separation of rank inequalities for the maximum stable set problem

When addressing the maximum stable set problem on a graph G = (V,E), rank inequalities prescribe that, for any subgraph G[U] induced by U ⊆ V , at most as many vertices as the stability number of G[U] can be part of a stable set of G. These inequalities are very general, as many of … Read more

A branch-cut-and-price algorithm for the energy minimization vehicle routing problem

We study a variant of the capacitated vehicle routing problem where the cost over each arc is defined as the product of the arc length and the weight of the vehicle when it traverses that arc. We propose two new mixed integer linear programming formulations for the problem: an arc-load formulation and a set partitioning … Read more

A hybrid Lagrangean metaheuristic for single machine scheduling problem with sequence-dependent setup times and due dates

In this article, a hybrid Lagrangean metaheuristic is proposed for single machine scheduling problems with sequence-dependent setup times and due dates. The objective function considered throughout this work, is to minimize the total tardiness. Related works and taxonomies for hybrid metaheuristics are analyzed, through a thorough historical overview. The proposed hybrid Lagrangean metaheuristic is a … Read more

Homotopy methods based on l0 norm for the compressed sensing problem

In this paper, two homotopy methods, which combine the advantage of the homotopy technique with the effectiveness of the iterative hard thresholding method, are presented for solving the compressed sensing problem. Under some mild assumptions, we prove that the limits of the sequences generated by the proposed homotopy methods are feasible solutions of the problem, … Read more