Branch and cut algorithms for detecting critical nodes in undirected graphs

In this paper we deal with the critical node problem, where a given number of nodes has to be removed from an undirected graph in order to maximize the disconnections between the node pairs of the graph. We propose an integer linear programming model with a non-polynomial number of constraints but whose linear relaxation can … Read more

Complexity results for the gap inequalities for the max-cut problem

In 1996, Laurent and Poljak introduced an extremely general class of cutting planes for the max-cut problem, called gap inequalities. We prove several results about them, including the following: (i) there must exist non-dominated gap inequalities with gap larger than 1, unless NP = co-NP; (ii) there must exist non-dominated gap inequalities with exponentially large … Read more

The Symmetric Quadratic Traveling Salesman Problem

In the quadratic traveling salesman problem a cost is associated with any three nodes traversed in succession. This structure arises, e.g., if the succession of two edges represents energetic conformations, a change of direction or a possible change of transportation means. In the symmetric case, costs do not depend on the direction of traversal. We … Read more

Polyhedral graph abstractions and an approach to the Linear Hirsch Conjecture

We introduce a new combinatorial abstraction for the graphs of polyhedra. The new abstraction is a flexible framework defined by combinatorial properties, with each collection of properties taken providing a variant for studying the diameters of polyhedral graphs. One particular variant has a diameter which satisfies the best known upper bound on the diameters of … Read more

LP and SDP Branch-and-Cut Algorithms for the Minimum Graph Bisection Problem: A Computational Comparison

While semidefinite relaxations are known to deliver good approximations for combinatorial optimization problems like graph bisection, their practical scope is mostly associated with small dense instances. For large sparse instances, cutting plane techniques are considered the method of choice. These are also applicable for semidefinite relaxations via the spectral bundle method, which allows to exploit … Read more

Recoverable Robust Knapsack: the Discrete Scenario Case

Admission control problems have been studied extensively in the past. In a typical setting, resources like bandwidth have to be distributed to the different customers according to their demands maximizing the profit of the company. Yet, in real-world applications those demands are deviating and in order to satisfy their service requirements often a robust approach … Read more

The Time Dependent Traveling Salesman Problem: Polyhedra and Algorithm

The Time Dependent Traveling Salesman Problem (TDTSP) is a generalization of the classical Traveling Salesman Problem (TSP), where arc costs depend on their position in the tour with respect to the source node. While TSP instances with thousands of vertices can be solved routinely, there are very challenging TDTSP instances with less than 100 vertices. … Read more

The Maximum k-Colorable Subgraph Problem and Orbitopes

Given an undirected node-weighted graph and a positive integer k, the maximum k-colorable subgraph probem is to select a k-colorable induced subgraph of largest weight. The natural integer programming formulation for this problem exhibits a high degree of symmetry which arises by permuting the color classes. It is well known that such symmetry has negative … Read more

Random half-integral polytopes

We show that half-integral polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as Ω(logn/loglogn) with positive probability — even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank … Read more