Size constrained graph partitioning polytope. Part I: Dimension and trivial facets

We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the … Read more

Size constrained graph partitioning polytope. Part II: Non-trivial facets

We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the … Read more

Parallel Approximation, and Integer Programming Reformulation

We analyze two integer programming reformulations of the n-dimensional knapsack feasibility problem without assuming any structure on the weight vector $a.$ Both reformulations have a constraint matrix in which the columns form a reduced basis in the sense of Lenstra, Lenstra, and Lov\’asz. The nullspace reformulation of Aardal, Hurkens and Lenstra has n-1 variables, and … Read more

On the integrality of the uncapacitated facility location polytope

We study a system of linear inequalities associated with the uncapacitated facility location problem. We show that this system defines a polytope with integer extreme points if and only if the graph does not contain a certain type of odd cycles. We also derive odd cycle inequalities and give a separation algorithm. ArticleDownload View PDF

The continuous d-step conjecture for polytopes

The curvature of a polytope, defined as the largest possible total curvature of the associated central path, can be regarded as the continuous analogue of its diameter. We prove the analogue of the result of Klee and Walkup. Namely, we show that if the order of the curvature is less than the dimension $d$ for … Read more

Single Item Lot-Sizing with Nondecreasing Capacities

We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially … Read more

Separation Algorithms for 0-1 Knapsack Polytopes

Valid inequalities for 0-1 knapsack polytopes often prove useful when tackling hard 0-1 Linear Programming problems. To use such inequalities effectively, one needs separation algorithms for them, i.e., routines for detecting when they are violated. We show that the separation problems for the so-called extended cover and weight inequalities can be solved exactly in O(nb) … Read more

On the strength of cut-based inequalities for capacitated network design polyhedra

In this paper we study capacitated network design problems, differentiating directed, bidirected and undirected link capacity models. We complement existing polyhedral results for the three variants by new classes of facet-defining valid inequalities and unified lifting results. For this, we study the restriction of the problems to a cut of the network. First, we show … Read more

Hyperplane Arrangements with Large Average Diameter

The largest possible average diameter of a bounded cell of a simple hyperplane arrangement is conjectured to be not greater than the dimension. We prove that this conjecture holds in dimension 2, and is asymptotically tight in fixed dimension. We give the exact value of the largest possible average diameter for all simple arrangements in … Read more