A Polyhedral Study for the Cubic Formulation of the Unconstrained Traveling Tournament Problem

We consider the unconstrained traveling tournament problem, a sports timetabling problem that minimizes traveling of teams. Since its introduction about 20 years ago, most research was devoted to modeling and reformulation approaches. In this paper we carry out a polyhedral study for the cubic integer programming formulation by establishing the dimension of the integer hull … Read more

Face Dimensions of General-Purpose Cutting Planes for Mixed-Integer Linear Programs

Cutting planes are a key ingredient to successfully solve mixed-integer linear programs. For specific problems, their strength is often theoretically assessed by showing that they are facet-defining for the corresponding mixed-integer hull. In this paper we experimentally investigate the dimensions of faces induced by general-purpose cutting planes generated by a state-of-the-art solver. Therefore, we relate … Read more

Valid Inequalities for Mixed Integer Bilevel Linear Optimization Problems

Despite the success of branch-and-cut methods for solving mixed integer bilevel linear optimization problems (MIBLPs) in practice, there have remained some gaps in the theory surrounding these methods. In this paper, we take a first step towards laying out a theory of valid inequalities and cutting-plane methods for MIBLPs that parallels the existing theory for … Read more

The Bipartite Boolean Quadric Polytope with Multiple-Choice Constraints

We consider the bipartite boolean quadric polytope (BQP) with multiple-choice constraints and analyse its combinatorial properties. The well-studied BQP is defined as the convex hull of all quadric incidence vectors over a bipartite graph. In this work, we study the case where there is a partition on one of the two bipartite node sets such … Read more

Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling

Over the last few years, optimization models for the energy-efficient operation of railway traffic have received more and more attention, particularly in connection with timetable design. In this work, we study the effect of load management via timetabling. The idea is to consider trains as time-flexible consumers in the railway power supply network and to … Read more

Matchings, hypergraphs, association schemes, and semidefinite optimization

We utilize association schemes to analyze the quality of semidefinite programming (SDP) based convex relaxations of integral packing and covering polyhedra determined by matchings in hypergraphs. As a by-product of our approach, we obtain bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman. We determine … Read more

An Exact Cutting Plane Method for hBcsubmodular Function Maximization

A natural and important generalization of submodularity—$k$-submodularity—applies to set functions with $k$ arguments and appears in a broad range of applications, such as infrastructure design, machine learning, and healthcare. In this paper, we study maximization problems with $k$-submodular objective functions. We propose valid linear inequalities, namely the $k$-submodular inequalities, for the hypograph of any $k$-submodular … Read more

A Separation Heuristic for 2-Partition Inequalities for the Clique Partitioning Problem

We consider the class of 2-partition inequalities for the clique partitioning problem associated with complete graphs. We propose a heuristic separation algorithm for the inequalities and evaluate its usefulness in a cutting-plane algorithm. Our computational experiments fall into two parts. In the first part, we compare the LP objective values obtained by the proposed separator … Read more

The ratio-cut polytope and K-means clustering

We introduce the ratio-cut polytope defined as the convex hull of ratio-cut vectors corresponding to all partitions of $n$ points in $\R^m$ into at most $K$ clusters. This polytope is closely related to the convex hull of the feasible region of a number of clustering problems such as K-means clustering and spectral clustering. We study … Read more

Linear Programming and Community Detection

The problem of community detection with two equal-sized communities is closely related to the minimum graph bisection problem over certain random graph models. In the stochastic block model distribution over networks with community structure, a well-known semidefinite programming (SDP) relaxation of the minimum bisection problem recovers the underlying communities whenever possible. Motivated by their superior … Read more