New Sufficient and Necessary Conditions for Constrained and Unconstrained Lipschitzian Error Bounds

Local error bounds play a fundamental role in mathematical programming and variational analysis. They are used e.g. as constraint qualifications in optimization, in developing calculus rules for generalized derivatives in nonsmooth and set-valued analysis, and they serve as a key ingredient in the design and convergence analysis of Newton-type methods for solving systems of possibly … Read more

A new problem qualification based on approximate KKT conditions for Lipschitzian optimization with application to bilevel programming

When dealing with general Lipschitzian optimization problems, there are many problem classes where even weak constraint qualications fail at local minimizers. In contrast to a constraint qualification, a problem qualification does not only rely on the constraints but also on the objective function to guarantee that a local minimizer is a Karush-Kuhn-Tucker (KKT) point. For … Read more

Relaxation methods for pessimistic bilevel optimization

We consider a smooth pessimistic bilevel optimization problem, where the lower-level problem is convex and satisfies the Slater constraint qualification. These assumptions ensure that the Karush-Kuhn-Tucker (KKT) reformulation of our problem is well-defined. We then introduce and study the (i) Scholtes, (ii) Lin and Fukushima, (iii) Kadrani, Dussault and Benchakroun, (iv) Steffensen and Ulbrich, and … Read more

Descent Scheme for a Class of Bilevel Programming Problems

In this paper, a class of bilevel programming problems is studied, in which the lower level is a quadratic programming problem, and the upper level problem consists of a nonlinear objective function with coupling constraints. An iterative process is developed to generate a sequence of points, which converges to the solution of this problem. In … Read more

Double-proximal augmented Lagrangian methods with improved convergence condition

In this paper, we propose a novel double-proximal augmented Lagrangian method(DP-ALM) for solving a family of linearly constrained convex minimization problems whose objective function is not necessarily smooth. This DP-ALM not only enjoys a flexible dual stepsize, but also contains a proximal subproblem with relatively smaller proximal parameter. By a new prediction-correction reformulation for this … Read more

An novel adaptive inertial algorithm for solving bilevel variational inequalities with pseudomonotone multivalued operators

This paper aims to develop an adaptive inertial algorithm for solving bilevel variational inequalities with multivalued pseudomonotone operators in real Hilbert spaces and establish its strong convergence property. The algorithm does not need to know the prior information of the Lipschitz constants and strong monotonicity coefficients of the associated mappings, incorporates inertial techniques and involves … Read more

On Coupling Constraints in Linear Bilevel Optimization

It is well-known that coupling constraints in linear bilevel optimization can lead to disconnected feasible sets, which is not possible without coupling constraints. However, there is no difference between linear bilevel problems with and without coupling constraints w.r.t. their complexity-theoretical hardness. In this note, we prove that, although there is a clear difference between these … Read more

A new proximal gradient algorithm for solving mixed variational inequality problems with a novel explicit stepsize and applications

In this paper, we propose a new algorithm for solving monotone mixed variational inequality problems in real Hilbert spaces based on proximal gradient method. Our new algorithm uses a novel explicit stepsize which is proved to be increasing to a positive value. This property plays an important role in improving the speed of the algorithm. … Read more

Extending the Reach of First-Order Algorithms for Nonconvex Min-Max Problems with Cohypomonotonicity

We focus on constrained, \(L\)-smooth, nonconvex-nonconcave min-max problems either satisfying \(\rho\)-cohypomonotonicity or admitting a solution to the \(\rho\)-weakly Minty Variational Inequality (MVI), where larger values of the parameter \(\rho>0\) correspond to a greater degree of nonconvexity. These problem classes include examples in two player reinforcement learning, interaction dominant min-max problems, and certain synthetic test problems on … Read more

Krasnoselskii-Mann Iterations: Inertia, Perturbations and Approximation

This paper is concerned with the study of a family of fixed point iterations combining relaxation with different inertial (acceleration) principles. We provide a systematic, unified and insightful analysis of the hypotheses that ensure their weak, strong and linear convergence, either matching or improving previous results obtained by analysing particular cases separately. We also show … Read more