The Difference Between 5×5 Doubly Nonnegative and Completely Positive Matrices

The convex cone of $n \times n$ completely positive (CPP) matrices and its dual cone of copositive matrices arise in several areas of applied mathematics, including optimization. Every CPP matrix is doubly nonnegative (DNN), i.e., positive semidefinite and component-wise nonnegative, and it is known that, for $n \le 4$ only, every DNN matrix is CPP. … Read more

Asymptotic convergence to the optimal value of diagonal proximal iterations in convex minimization

Given an approximation $\{f_n\}$ of a given objective function $f$, we provide simple and fairly general conditions under which a diagonal proximal point algorithm approximates the value $\inf f$ at a reasonable rate. We also perform some numerical tests and present a short survey on finite convergence. Citation To appear in Journal of Convex Analysis, … Read more

On the computation of $C^*$ certificates

The cone of completely positive matrices $C^*$ is the convex hull of all symmetric rank-1-matrices $xx^T$ with nonnegative entries. Determining whether a given matrix $B$ is completely positive is an $\cal NP$-complete problem. We examine a simple algorithm which — for a given input $B$ — either determines a certificate proving that $B\in C^*$ or … Read more

Parimutuel Betting on Permutations

We focus on a permutation betting market under parimutuel call auction model where traders bet on the final ranking of n candidates. We present a Proportional Betting mechanism for this market. Our mechanism allows the traders to bet on any subset of the n x n ‘candidate-rank’ pairs, and rewards them proportionally to the number … Read more

General algorithmic frameworks for online problems

We study general algorithmic frameworks for online learning tasks. These include binary classification, regression, multiclass problems and cost-sensitive multiclass classification. The theorems that we present give loss bounds on the behavior of our algorithms that depend on general conditions on the iterative step sizes. Citation International Journal of Pure and Applied Mathematics, Vol. 46 (2008), … Read more

Iterative Estimation Maximization for Stochastic Linear Programs with Conditional Value-at-Risk Constraints

We present a new algorithm, Iterative Estimation Maximization (IEM), for stochastic linear programs with Conditional Value-at-Risk constraints. IEM iteratively constructs a sequence of compact-sized linear optimization problems, and solves them sequentially to find the optimal solution. The problem size IEM solves in each iteration is unaffected by the size of random samples, which makes it … Read more

On the behavior of subgradient projections methods for convex feasibility problems in Euclidean spaces

We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy leaves enough user-flexibility but gives a mathematical guarantee for the algorithm’s behavior in … Read more

First-order algorithm with (ln(1/\epsilon))$ convergence for $\epsilonhBcequilibrium in two-person zero-sum games

We propose an iterated version of Nesterov’s first-order smoothing method for the two-person zero-sum game equilibrium problem $$\min_{x\in Q_1} \max_{y\in Q_2} \ip{x}{Ay} = \max_{y\in Q_2} \min_{x\in Q_1} \ip{x}{Ay}.$$ This formulation applies to matrix games as well as sequential games. Our new algorithmic scheme computes an $\epsilon$-equilibrium to this min-max problem in $\Oh(\kappa(A) \ln(1/\epsilon))$ first-order iterations, … Read more

Smoothing techniques for computing Nash equilibria of sequential games

We develop first-order smoothing techniques for saddle-point problems that arise in the Nash equilibria computation of sequential games. The crux of our work is a construction of suitable prox-functions for a certain class of polytopes that encode the sequential nature of the games. An implementation based on our smoothing techniques computes approximate Nash equilibria for … Read more

Duality of ellipsoidal approximations via semi-infinite programming

In this work, we develop duality of the minimum volume circumscribed ellipsoid and the maximum volume inscribed ellipsoid problems. We present a unified treatment of both problems using convex semi–infinite programming. We establish the known duality relationship between the minimum volume circumscribed ellipsoid problem and the optimal experimental design problem in statistics. The duality results … Read more