On Non-Convex Quadratic Programming with Box Constraints

Non-Convex Quadratic Programming with Box Constraints is a fundamental NP-hard global optimisation problem. Recently, some authors have studied a certain family of convex sets associated with this problem. We prove several fundamental results concerned with these convex sets: we determine their dimension, characterise their extreme points and vertices, show their invariance under certain affine transformations, … Read more

T-algebras and linear optimization over symmetric cones

Euclidean Jordan-algebra is a commonly used tool in designing interior point algorithms for symmetric cone programs. T-algebra, on the other hand, has rarely been used in symmetric cone programming. In this paper, we use both algebraic characterizations of symmetric cones to extend the target-following framework of linear programming to symmetric cone programming. Within this framework, … Read more

An Analysis of Weighted Least Squares Method and Layered Least Squares Method with the Basis Block Lower Triangular Matrix Form

In this paper, we analyze the limiting behavior of the weighted least squares problem $\min_{x\in\Re^n}\sum_{i=1}^p\|D_i(A_ix-b_i)\|^2$, where each $D_i$ is a positive definite diagonal matrix. We consider the situation where the magnitude of the weights are drastically different block-wisely so that $\max(D_1)\geq\min(D_1) \gg \max(D_2) \geq \min(D_2) \gg \max(D_3) \geq \ldots \gg \max(D_{p-1}) \geq \min(D_{p-1}) \gg \max(D_p)$. … Read more

The Difference Between 5×5 Doubly Nonnegative and Completely Positive Matrices

The convex cone of $n \times n$ completely positive (CPP) matrices and its dual cone of copositive matrices arise in several areas of applied mathematics, including optimization. Every CPP matrix is doubly nonnegative (DNN), i.e., positive semidefinite and component-wise nonnegative, and it is known that, for $n \le 4$ only, every DNN matrix is CPP. … Read more

Asymptotic convergence to the optimal value of diagonal proximal iterations in convex minimization

Given an approximation $\{f_n\}$ of a given objective function $f$, we provide simple and fairly general conditions under which a diagonal proximal point algorithm approximates the value $\inf f$ at a reasonable rate. We also perform some numerical tests and present a short survey on finite convergence. CitationTo appear in Journal of Convex Analysis, 16 … Read more

On the computation of $C^*$ certificates

The cone of completely positive matrices $C^*$ is the convex hull of all symmetric rank-1-matrices $xx^T$ with nonnegative entries. Determining whether a given matrix $B$ is completely positive is an $\cal NP$-complete problem. We examine a simple algorithm which — for a given input $B$ — either determines a certificate proving that $B\in C^*$ or … Read more

Parimutuel Betting on Permutations

We focus on a permutation betting market under parimutuel call auction model where traders bet on the final ranking of n candidates. We present a Proportional Betting mechanism for this market. Our mechanism allows the traders to bet on any subset of the n x n ‘candidate-rank’ pairs, and rewards them proportionally to the number … Read more

General algorithmic frameworks for online problems

We study general algorithmic frameworks for online learning tasks. These include binary classification, regression, multiclass problems and cost-sensitive multiclass classification. The theorems that we present give loss bounds on the behavior of our algorithms that depend on general conditions on the iterative step sizes. CitationInternational Journal of Pure and Applied Mathematics, Vol. 46 (2008), pp. … Read more

Iterative Estimation Maximization for Stochastic Linear Programs with Conditional Value-at-Risk Constraints

We present a new algorithm, Iterative Estimation Maximization (IEM), for stochastic linear programs with Conditional Value-at-Risk constraints. IEM iteratively constructs a sequence of compact-sized linear optimization problems, and solves them sequentially to find the optimal solution. The problem size IEM solves in each iteration is unaffected by the size of random samples, which makes it … Read more