Smoothing techniques for computing Nash equilibria of sequential games

We develop first-order smoothing techniques for saddle-point problems that arise in the Nash equilibria computation of sequential games. The crux of our work is a construction of suitable prox-functions for a certain class of polytopes that encode the sequential nature of the games. An implementation based on our smoothing techniques computes approximate Nash equilibria for … Read more

Duality of ellipsoidal approximations via semi-infinite programming

In this work, we develop duality of the minimum volume circumscribed ellipsoid and the maximum volume inscribed ellipsoid problems. We present a unified treatment of both problems using convex semi–infinite programming. We establish the known duality relationship between the minimum volume circumscribed ellipsoid problem and the optimal experimental design problem in statistics. The duality results … Read more

An Algorithm and a Core Set Result for the Weighted Euclidean One-Center Problem

Given ${\cal A} := \{a^1,\ldots,a^m\} \subset \R^n$ with corresponding positive weights ${\cal W} := \{\omega_1,\ldots,\omega_m\}$, the weighted Euclidean one-center problem, which is a generalization of the minimum enclosing ball problem, involves the computation of a point $c_{\cal A} \in \R^n$ that minimizes the maximum weighted Euclidean distance from $c_{\cal A}$ to each point in ${\cal … Read more

Kernel Support Vector Regression with imprecise output

We consider a regression problem where uncertainty affects to the dependent variable of the elements of the database. A model based on the standard epsilon-Support Vector Regression approach is given, where two hyperplanes need to be constructed to predict the interval-valued dependent variable. By using the Hausdorff distance to measure the error between predicted and … Read more

Probing the Pareto frontier for basis pursuit solutions

The basis pursuit problem seeks a minimum one-norm solution of an underdetermined least-squares problem. Basis pursuit denoise (BPDN) fits the least-squares problem only approximately, and a single parameter determines a curve that traces the optimal trade-off between the least-squares fit and the one-norm of the solution. We prove that this curve is convex and continuously … Read more

Convex Optimization Methods for Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression

In this paper, we study convex optimization methods for computing the trace norm regularized least squares estimate in multivariate linear regression. The so-called factor estimation and selection (FES) method, recently proposed by Yuan et al. [17], conducts parameter estimation and factor selection simultaneously and have been shown to enjoy nice properties in both large and … Read more

What Shape is your Conjugate? A Survey of Computational Convex Analysis and its Applications

Computational Convex Analysis algorithms have been rediscovered several times in the past by researchers from different fields. To further communications between practitioners, we review the field of Computational Convex Analysis, which focuses on the numerical computation of fundamental transforms arising from convex analysis. Current models use symbolic, numeric, and hybrid symbolic-numeric algorithms. Our objective is … Read more

Robust Efficient Frontier Analysis with a Separable Uncertainty Model

Mean-variance (MV) analysis is often sensitive to model mis-specification or uncertainty, meaning that the MV efficient portfolios constructed with an estimate of the model parameters (i.e., the expected return vector and covariance of asset returns) can give very poor performance for another set of parameters that is similar and statistically hard to distinguish from the … Read more

A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance

This paper concerns a fractional function of the form $x^Ta/\sqrt{x^TBx}$, where $B$ is positive definite. We consider the game of choosing $x$ from a convex set, to maximize the function, and choosing $(a,B)$ from a convex set, to minimize it. We prove the existence of a saddle point and describe an efficient method, based on … Read more

Controlling the dose distribution with gEUD-type constraints within the convex IMRT optimization framework

Radiation therapy is an important modality in treating various cancers. Various treatment planning and delivery technologies have emerged to support Intensity Modulated Radiation Therapy (IMRT), creating significant opportunities to advance this type of treatment. We investigate the possibility of including the dose prescription, specified by the DVH, within the convex optimization framework for inverse IMRT … Read more