An Extension of the Proximal Point Method for Quasiconvex Minimization

In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex objective functions on the Euclidean space and the nonnegative orthant. For the unconstrained minimization problem, assumming that the function is bounded from below and lower semicontinuous we prove that iterations fxkg given by 0 2 b@(f(:)+(k=2)jj:􀀀xk􀀀1jj2)(xk) are … Read more

Steepest descent method for quasiconvex minimization on Riemannian manifolds

This paper extends the full convergence of the steepest descent algorithm with a generalized Armijo search and a proximal regularization to solve quasiconvex minimization problems defined on complete Riemannian manifolds. Previous convergence results are obtained as particular cases of our approach and some examples in non Euclidian spaces are given. CitationJ. Math. Anal. Appl. 341 … Read more

Some remarks about the transformation of Charnes and Cooper

In this paper we extend in a simple way the transformation of Charnes and Cooper to the case where the functional ratio to be considered are of similar polynomial CitationUniversidad de San Luis Ejercito de Los Andes 950 San Luis(5700) ArgentinaArticleDownload View PDF

Proximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances

This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, … Read more

A Proximal Method for Identifying Active Manifolds

The minimization of an objective function over a constraint set can often be simplified if the “active manifold” of the constraints set can be correctly identified. In this work we present a simple subproblem, which can be used inside of any (convergent) optimization algorithm, that will identify the active manifold of a “prox-regular partly smooth” … Read more

Prox-Regularity and Stability of the Proximal Mapping

Fundamental insights into the properties of a function come from the study of its Moreau envelopes and Proximal point mappings. In this paper we examine the stability of these two objects under several types of perturbations. In the simplest case, we consider tilt-perturbations, i.e. perturbations which correspond to adding a linear term to the objective … Read more

Constructing Generalized Mean Functions Using Convex Functions with Regularity Conditions

The generalized mean function has been widely used in convex analysis and mathematical programming. This paper studies a further generalization of such a function. A necessary and sufficient condition is obtained for the convexity of a generalized function. Additional sufficient conditions that can be easily checked are derived for the purpose of identifying some classes … Read more

Computing Proximal Points on Nonconvex Functions

The proximal point mapping is the basis of many optimization techniques for convex functions. By means of variational analysis, the concept of proximal mapping was recently extended to nonconvex functions that are prox-regular and prox-bounded. In such a setting, the proximal point mapping is locally Lipschitz continuous and its set of fixed points coincide with … Read more

On the block-structured distance to non-surjectivity of sublinear mappings

We show that the block-structured distance to non-surjectivity of a set-valued sublinear mapping equals the reciprocal of a suitable block-structured norm of its inverse. This gives a natural generalization of the classical Eckart and Young identity for square invertible matrices. CitationMathematical Programming 103 (2005) pp. 561–573.

Convex- and Monotone- Transformable Mathematical Programming Problems and a Proximal-Like Point Method

The problem of finding singularities of monotone vectors fields on Hadamard manifolds will be considered and solved by extending the well-known proximal point algorithm. For monotone vector fields the algorithm will generate a well defined sequence, and for monotone vector fields with singularities it will converge to a singularity. It will be also shown how … Read more