Proximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances

This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, … Read more

A Proximal Method for Identifying Active Manifolds

The minimization of an objective function over a constraint set can often be simplified if the “active manifold” of the constraints set can be correctly identified. In this work we present a simple subproblem, which can be used inside of any (convergent) optimization algorithm, that will identify the active manifold of a “prox-regular partly smooth” … Read more

Prox-Regularity and Stability of the Proximal Mapping

Fundamental insights into the properties of a function come from the study of its Moreau envelopes and Proximal point mappings. In this paper we examine the stability of these two objects under several types of perturbations. In the simplest case, we consider tilt-perturbations, i.e. perturbations which correspond to adding a linear term to the objective … Read more

Constructing Generalized Mean Functions Using Convex Functions with Regularity Conditions

The generalized mean function has been widely used in convex analysis and mathematical programming. This paper studies a further generalization of such a function. A necessary and sufficient condition is obtained for the convexity of a generalized function. Additional sufficient conditions that can be easily checked are derived for the purpose of identifying some classes … Read more

Computing Proximal Points on Nonconvex Functions

The proximal point mapping is the basis of many optimization techniques for convex functions. By means of variational analysis, the concept of proximal mapping was recently extended to nonconvex functions that are prox-regular and prox-bounded. In such a setting, the proximal point mapping is locally Lipschitz continuous and its set of fixed points coincide with … Read more

On the block-structured distance to non-surjectivity of sublinear mappings

We show that the block-structured distance to non-surjectivity of a set-valued sublinear mapping equals the reciprocal of a suitable block-structured norm of its inverse. This gives a natural generalization of the classical Eckart and Young identity for square invertible matrices. CitationMathematical Programming 103 (2005) pp. 561–573.

Convex- and Monotone- Transformable Mathematical Programming Problems and a Proximal-Like Point Method

The problem of finding singularities of monotone vectors fields on Hadamard manifolds will be considered and solved by extending the well-known proximal point algorithm. For monotone vector fields the algorithm will generate a well defined sequence, and for monotone vector fields with singularities it will converge to a singularity. It will be also shown how … Read more

Optimality Conditions for Vector Optimization with Set-Valued Maps

Based on near convexity, we introduce the concepts of nearly convexlike set-valued maps and nearly semiconvexlike set-valued maps, give some charaterizations of them, and investigate the relationships between them. Then a Farkas-Minkowski type alternative theorem is shown under the assumption of near semiconvexlikeness. By using the alternative theorem and some other lemmas, we establish necessary … Read more