Robust convex relaxation for the planted clique and densest k-subgraph problems

We consider the problem of identifying the densest k-node subgraph in a given graph. We write this problem as an instance of rank-constrained cardinality minimization and then relax using the nuclear and l1 norms. Although the original combinatorial problem is NP-hard, we show that the densest k-subgraph can be recovered from the solution of our … Read more

GENERALIZATIONS OF THE DENNIS-MOR\’E THEOREM II

This paper is a continuation of our previous paper were we presented generalizations of the Dennis-Mor\’e theorem to characterize q-superliner convergences of quasi-Newton methods for solving equations and variational inequalities in Banach spaces. Here we prove Dennis-Mor\’e type theorems for inexact quasi-Newton methods applied to variational inequalities in finite dimensions. We first consider variational inequalities … Read more

Second-order growth, tilt stability, and metric regularity of the subdifferential

This paper sheds new light on several interrelated topics of second-order variational analysis, both in finite and infinite-dimensional settings. We establish new relationships between second-order growth conditions on functions, the basic properties of metric regularity and subregularity of the limiting subdifferential, tilt-stability of local minimizers, and positive definiteness/semidefiniteness properties of the second-order subdifferential (or generalized … Read more

REDUCTION OF TWO-STAGE PROBABILISTIC OPTIMIZATION PROBLEMS WITH DISCRETE DISTRIBUTION OF RANDOM DATA TO MIXED INTEGER PROGRAMMING PROBLEMS

We consider models of two-stage stochastic programming with a quantile second stage criterion and optimization models with a chance constraint on the second stage objective function values. Such models allow to formalize requirements to reliability and safety of the system under consideration, and to optimize the system in extreme conditions. We suggest a method of … Read more

A doubly stabilized bundle method for nonsmooth convex optimization

We propose a bundle method for minimizing nonsmooth convex functions that combines both the level and the proximal stabilizations. Most bundle algorithms use a cutting-plane model of the objective function to formulate a subproblem whose solution gives the next iterate. Proximal bundle methods employ the model in the objective function of the subproblem, while level … Read more

Orthogonal invariance and identifiability

Orthogonally invariant functions of symmetric matrices often inherit properties from their diagonal restrictions: von Neumann’s theorem on matrix norms is an early example. We discuss the example of “identifiability”, a common property of nonsmooth functions associated with the existence of a smooth manifold of approximate critical points. Identifiability (or its synonym, “partial smoothness”) is the … Read more

Abstract Newtonian Frameworks and Their Applications

We unify and extend some Newtonian iterative frameworks developed earlier in the literature, which results in a collection of convenient tools for local convergence analysis of various algorithms under various sets of assumptions including strong metric regularity, semistability, or upper-Lipschizt stability, the latter allowing for nonisolated solutions. These abstract schemes are further applied for deriving … Read more

Variable Metric Forward-Backward algorithm for minimizing the sum of a differentiable function and a convex function

We consider the minimization of a function $G$ defined on $R^N$, which is the sum of a (non necessarily convex) differentiable function and a (non necessarily differentiable) convex function. Moreover, we assume that $G$ satisfies the Kurdyka-Lojasiewicz property. Such a problem can be solved with the Forward-Backward algorithm. However, the latter algorithm may suffer from … Read more

Well-posedness for Lexicographic Vector Equilibrium Problems

We consider lexicographic vector equilibrium problems in metric spaces. Sufficient conditions for a family of such problems to be (uniquely) well-posed at the reference point are established. As an application, we derive several results on well-posedness for a class of variational inequalities. Citation Published in Constructive Nonsmooth Analysis and Related Topics (Vladimir Demyanov, Panos M. … Read more

S_1/2 Regularization Methods and Fixed Point Algorithms for Affine Rank Minimization Problems

The affine rank minimization problem is to minimize the rank of a matrix under linear constraints. It has many applications in various areas such as statistics, control, system identification and machine learning. Unlike the literatures which use the nuclear norm or the general Schatten $q~(0<q<1)$ quasi-norm to approximate the rank of a matrix, in this … Read more