DC programming approach for solving a class of bilevel partial facility interdiction problems

We propose a new approach based DC programming for fnding a solution of the partial facility interdiction problem that belongs to the class of bilevel programming. This model was frst considered in the work of Aksen et al. [1] with a heuristic algorithm named multi-start simplex search (MSS). However, because of the big number of … Read more

Continuous exact relaxation and alternating proximal gradient algorithm for partial sparse and partial group sparse optimization problems

In this paper, we consider a partial sparse and partial group sparse optimization problem, where the loss function is a continuously differentiable function (possibly nonconvex), and the penalty term consists of two parts associated with sparsity and group sparsity. The first part is the $\ell_0$ norm of ${\bf x}$, the second part is the $\ell_{2,0}$ … Read more

Analysis of a Class of Minimization Problems Lacking Lower Semicontinuity

The minimization of non-lower semicontinuous functions is a difficult topic that has been minimally studied. Among such functions is a Heaviside composite function that is the composition of a Heaviside function with a possibly nonsmooth multivariate function. Unifying a statistical estimation problem with hierarchical selection of variables and a sample average approximation of composite chance … Read more

Preconditioning for Generelized Jacobians with the ω-Condition Number

Preconditioning is essential in iterative methods for solving linear systems of equations. We study a nonclassic matrix condition number, the ω-condition number, in the context of optimal conditioning for low rank updating of positive definite matrices. For a positive definite matrix, this condition measure is the ratio of the arithmetic and geometric means of the … Read more

Self-concordant Smoothing for Large-Scale Convex Composite Optimization

We introduce a notion of self-concordant smoothing for minimizing the sum of two convex functions, one of which is smooth and the other may be nonsmooth. The key highlight of our approach is in a natural property of the resulting problem’s structure which provides us with a variable-metric selection method and a step-length selection rule … Read more

Sufficient Conditions for Lipschitzian Error Bounds for Complementarity Systems

We are concerned with Lipschitzian error bounds and Lipschitzian stability properties for solutions of a complementarity system. For this purpose, we deal with a nonsmooth slack-variable reformulation of the complementarity system, and study conditions under which the reformulation serves as a local error bound for the solution set of the complementarity system. We also discuss … Read more

Transformation of Bilevel Optimization Problems into Single-Level Ones

Bilevel optimization problems are hierarchical problems with a constraint set which is a subset of the graph of the solution set mapping of a second optimization problem. To investigate their properties and derive solution algorithms, their transformation into single-level ones is necessary. For this, various approaches have been developed. The rst and most often used … Read more

Exact convergence rate of the last iterate in subgradient methods

We study the convergence of the last iterate in subgradient methods applied to the minimization of a nonsmooth convex function with bounded subgradients. We first introduce a proof technique that generalizes the standard analysis of subgradient methods. It is based on tracking the distance between the current iterate and a different reference point at each … Read more

Inexact Direct-Search Methods for Bilevel Optimization Problems

In this work, we introduce new direct search schemes for the solution of bilevel optimization (BO) problems. Our methods rely on a fixed accuracy black box oracle for the lower-level problem, and deal both with smooth and potentially nonsmooth true objectives. We thus analyze for the first time in the literature direct search schemes in … Read more

On the Computation of Restricted Normal Cones

Restricted normal cones are of interest, for instance, in the theory of local error bounds, where they have recently been used to characterize the exis- tence of a constrained Lipschitzian error bound. In this paper, we establish rela- tions between two concepts for restricted normals. The first of these concepts was introduced in the late … Read more