Smoothing Method of Multipliers for Sum-Max Problems

We study nonsmooth unconstrained optimization problem, which includes sum of pairwise maxima of smooth functions. Minimum $l_1$-norm approximation is a particular case of this problem. Combining ideas Lagrange multipliers with smooth approximation of max-type function, we obtain a new kind of nonquadratic augmented Lagrangian. Our approach does not require artificial variables, and preserves sparse structure … Read more

Lagrangean Duality Applied on Vehicle Routing with Time Windows

This paper presents the results of the application of a non-differentiable optimization method in connection with the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is an extension of the Vehicle Routing Problem. In the VRPTW the service at each customer must start within an associated time window. The Shortest Path decomposition of the … Read more

The Volume Algorithm revisited: relation with bundle methods

We revise the Volume Algorithm (VA) for linear programming and relate it to bundle methods. When first introduced, VA was presented as a subgradient-like method for solving the original problem in its dual form. In a way similar to the serious/null steps philosophy of bundle methods, VA produces green, yellow or red steps. In order … Read more

A Cutting Plane Algorithm for Large Scale Semidefinite Relaxations

The recent spectral bundle method allows to compute, within reasonable time, approximate dual solutions of large scale semidefinite quadratic 0-1 programming relaxations. We show that it also generates a sequence of primal approximations that converge to a primal optimal solution. Separating with respect to these approximations gives rise to a cutting plane algorithm that converges … Read more

Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems

It is well known that the eigenvalues of a real symmetric matrix are not everywhere differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is the difference of two convex functions. This directly implies that the eigenvalues of a symmetric matrix are semismooth everywhere. Based on a very recent … Read more

Polynomial interior point cutting plane methods

Polynomial cutting plane methods based on the logarithmic barrier function and on the volumetric center are surveyed. These algorithms construct a linear programming relaxation of the feasible region, find an appropriate approximate center of the region, and call a separation oracle at this approximate center to determine whether additional constraints should be added to the … Read more

Variational Analysis of Non-Lipschitz Spectral Functions

We consider spectral functions $f \circ \lambda$, where $f$ is any permutation-invariant mapping from $\Cx^n$ to $\Rl$, and $\lambda$ is the eigenvalue map from the set of $n \times n$ complex matrices to $\Cx^n$, ordering the eigenvalues lexicographically. For example, if $f$ is the function “maximum real part Citation Math. Programming 90 (2001), pp. 317-352

Variational Analysis of the Abscissa Mapping for Polynomials

The abscissa mapping on the affine variety $M_n$ of monic polynomials of degree $n$ is the mapping that takes a monic polynomial to the maximum of the real parts of its roots. This mapping plays a central role in the stability theory of matrices and dynamical systems. It is well known that the abscissa mapping … Read more

Optimal Stability and Eigenvalue Multiplicity

We consider the problem of minimizing over an affine set of square matrices the maximum of the real parts of the eigenvalues. Such problems are prototypical in robust control and stability analysis. Under nondegeneracy conditions, we show that the multiplicities of the active eigenvalues at a critical matrix remain unchanged under small perturbations of the … Read more

Optimizing Matrix Stability

Given an affine subspace of square matrices, we consider the problem of minimizing the spectral abscissa (the largest real part of an eigenvalue). We give an example whose optimal solution has Jordan form consisting of a single Jordan block, and we show, using nonlipschitz variational analysis, that this behaviour persists under arbitrary small perturbations to … Read more