A unifying framework for several cutting plane algorithms for semidefinite programming

Cutting plane methods provide the means to solve large scale semidefinite programs (SDP) cheaply and quickly. They can also conceivably be employed for the purposes of re-optimization after branching, or the addition of cutting planes. We give a survey of various cutting plane approaches for SDP in this paper. These cutting plane approaches arise from … Read more

Using selective orthonormalization to update the analytic center after the addition of multiple cuts

We study the issue of updating the analytic center after multiple cutting planes have been added through the analytic center of the current polytope in Euclidean n-space. This is an important issue that arises at every `stage’ in a cutting plane algorithm. If q cuts are to be added, with q no larger than n, … Read more

Robust regularization

Given a real function on a Euclidean space, we consider its “robust regularization”: the value of this new function at any given point is the maximum value of the original function in a fixed neighbourhood of the point in question. This construction allows us to impose constraints in an optimization problem *robustly*, safeguarding a constraint … Read more

Minimizing nonconvex nonsmooth functions via cutting planes and proximity control

We describe an extension of the classical cutting plane algorithm to tackle the unconstrained minimization of a nonconvex, not necessarily differentiable function of several variables. The method is based on the construction of both a lower and an upper polyhedral approximation to the objective function and it is related to the use of the concept … Read more

On a class of nonsmooth composite functions

We discuss in this paper a class of nonsmooth functions which can be represented, in a neighborhood of a considered point, as a composition of a positively homogeneous convex function and a smooth mapping which maps the considered point into the null vector. We argue that this is a sufficiently rich class of functions and … Read more

A new exact penalty function

For constrained smooth or nonsmooth optimization problems, new continuously differentiable penalty functions are derived. They are proved exact in the sense that under some nondegeneracy assumption, local optimizers of a nonlinear program are precisely the optimizers of the associated penalty function. This is achieved by augmenting the dimension of the program by a variable that … Read more

Combinatorial Structures in Nonlinear Programming

Non-smoothness and non-convexity in optimization problems often arise because a combinatorial structure is imposed on smooth or convex data. The combinatorial aspect can be explicit, e.g. through the use of ”max”, ”min”, or ”if” statements in a model, or implicit as in the case of bilevel optimization where the combinatorial structure arises from the possible … Read more

Smoothing Method of Multipliers for Sum-Max Problems

We study nonsmooth unconstrained optimization problem, which includes sum of pairwise maxima of smooth functions. Minimum $l_1$-norm approximation is a particular case of this problem. Combining ideas Lagrange multipliers with smooth approximation of max-type function, we obtain a new kind of nonquadratic augmented Lagrangian. Our approach does not require artificial variables, and preserves sparse structure … Read more

Lagrangean Duality Applied on Vehicle Routing with Time Windows

This paper presents the results of the application of a non-differentiable optimization method in connection with the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is an extension of the Vehicle Routing Problem. In the VRPTW the service at each customer must start within an associated time window. The Shortest Path decomposition of the … Read more

The Volume Algorithm revisited: relation with bundle methods

We revise the Volume Algorithm (VA) for linear programming and relate it to bundle methods. When first introduced, VA was presented as a subgradient-like method for solving the original problem in its dual form. In a way similar to the serious/null steps philosophy of bundle methods, VA produces green, yellow or red steps. In order … Read more