Exact regularization of linear programs

We show that linear programs (LPs) admit regularizations that either contract the original (primal) solution set or leave it unchanged. Any regularization function that is convex and has compact level sets is allowed–differentiability is not required. This is an extension of the result first described by Mangasarian and Meyer (SIAM J. Control Optim., 17(6), pp. … Read more

Steplength Selection in Interior-Point Methods for Quadratic Programming

We present a new strategy for choosing primal and dual steplengths in a primal-dual interior-point algorithm for convex quadratic programming. Current implementations often scale steps equally to avoid increases in dual infeasibility between iterations. We propose that this method can be too conservative, while safeguarding an unequally-scaled steplength approach will often require fewer steps toward … Read more

Prox-Regularity and Stability of the Proximal Mapping

Fundamental insights into the properties of a function come from the study of its Moreau envelopes and Proximal point mappings. In this paper we examine the stability of these two objects under several types of perturbations. In the simplest case, we consider tilt-perturbations, i.e. perturbations which correspond to adding a linear term to the objective … Read more

Stationarity and Regularity of Real-Valued Functions

Different stationarity and regularity concepts for extended real-valued functions on metric spaces are considered in the paper. The properties are characterized in terms of certain local constants. A classification scheme for stationarity/regularity constants and corresponding concepts is proposed. The relations between different constants are established. CitationUniversity of Ballarat, School of Information Technology and Mathematical Sciences, … Read more

A conic interior point decomposition approach for large scale semidefinite programming

We describe a conic interior point decomposition approach for solving a large scale semidefinite programs (SDP) whose primal feasible set is bounded. The idea is to solve such an SDP using existing primal-dual interior point methods, in an iterative fashion between a {\em master problem} and a {\em subproblem}. In our case, the master problem … Read more

The multiple-sets split feasibility problem and its applications for inverse problems

The multiple-sets split feasibility problem requires to find a point closest to a family of closed convex sets in one space such that its image under a linear transformation will be closest to another family of closed convex sets in the image space. It can be a model for many inverse problems where constraints are … Read more

Primal interior-point method for large sparse minimax optimization.

In this paper, we propose an interior-point method for large sparse minimax optimization. After a short introduction, where various barrier terms are discussed, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results … Read more

Trust-region interior-point method for large sparse l_1 optimization.

In this paper, we propose an interior-point method for large sparse l_1 optimization. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results of computational experiments given in this … Read more

On Time-Invariant Purified-Output-Based Discrete Time Control

In http://www.optimizationonline.org/DB_HTML/2005/05/1136.html 05/25/05, we have demonstrated that the family of all affine non-anticipative output-based control laws in a discrete time linear dynamical system affected by uncertain disturbances is equivalent, as far as state-control trajectories are concerned, to the family of all affine non-anticipative “purified-output-based” control laws. The advantage of the latter representation of affine controls … Read more

Computational acceleration of projection algorithms for the linear best approximation problem

This is an experimental computational account of projection algorithms for the linear best approximation problem. We focus on the sequential and simultaneous versions of Dykstra’s algorithm and the Halpern-Lions-Wittmann-Bauschke algorithm for the best approximation problem from a point to the intersection of closed convex sets in the Euclidean space. These algorithms employ different iterative approaches … Read more