A Vectorization Scheme for Nonconvex Set Optimization Problems

In this paper, we study a solution approach for set optimization problems with respect to the lower set less relation. This approach can serve as a base for numerically solving set optimization problems by using established solvers from multiobjective optimization. Our strategy consists of deriving a parametric family of multiobjective optimization problems whose optimal solution … Read more

A Semismooth Newton-Type Method for the Nearest Doubly Stochastic Matrix Problem

We study a semismooth Newton-type method for the nearest doubly stochastic matrix problem where both differentiability and nonsingularity of the Jacobian can fail. The optimality conditions for this problem are formulated as a system of strongly semismooth functions. We show that the so-called local error bound condition does not hold for this system. Thus the … Read more

An optimization problem for dynamic OD trip matrix estimation on transit networks with different types of data collection units

Dynamic O-D trip matrices for public transportation systems provide a valuable source of information of the usage of public transportation system that may be used either by planners for a better design of the transportation facilities or by the administrations in order to characterize the efficiency of the transport system both in peak hours and … Read more

Regularized quasi-monotone method for stochastic optimization

We adapt the quasi-monotone method from Nesterov, Shikhman (2015) for composite convex minimization in the stochastic setting. For the proposed numerical scheme we derive the optimal convergence rate in terms of the last iterate, rather than on average as it is standard for subgradient methods. The theoretical guarantee for individual convergence of the regularized quasi-monotone … Read more

Rank computation in Euclidean Jordan algebras

Euclidean Jordan algebras are the abstract foundation for symmetriccone optimization. Every element in a Euclidean Jordan algebra has a complete spectral decomposition analogous to the spectral decomposition of a real symmetric matrix into rank-one projections. The spectral decomposition in a Euclidean Jordan algebra stems from the likewise-analogous characteristic polynomial of its elements, whose degree is … Read more

A Fixed Point Approach with a New Solution Concept for Set-valued Optimization

We present a fixed point approach to find the whole solution set of a set-valued optimization problem though a parametric problem, in which the height of the level set of the objective function is regarded as the parameter. First, the solution concept based on the vector approach is considered in this method. Then, we propose … Read more

FISTA and Extensions – Review and New Insights

The purpose of this technical report is to review the main properties of an accelerated composite gradient (ACG) method commonly referred to as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). In addition, we state a version of FISTA for solving both convex and strongly convex composite minimization problems and derive its iteration complexities to generate iterates … Read more

A new stopping criterion for Krylov solvers applied in Interior Point Methods

A surprising result is presented in this paper with possible far reaching consequences for any optimization technique which relies on Krylov subspace methods employed to solve the underlying linear equation systems. In this paper the advantages of the new technique are illustrated in the context of Interior Point Methods (IPMs). When an iterative method is … Read more

Dealing with inequality constraints in large-scale semidefinite relaxations for graph coloring and maximum clique problems

Semidefinite programs (SDPs) can be solved in polynomial time by interior point methods. However, when the dimension of the problem gets large, interior point methods become impractical in terms of both computational time and memory requirements. Certain first-order methods, such as Alternating Direction Methods of Multipliers (ADMMs), established as suitable algorithms to deal with large-scale … Read more

Frank-Wolfe and friends: a journey into projection-free first-order optimization methods

Invented some 65 years ago in a seminal paper by Marguerite Straus-Frank and Philip Wolfe, the Frank-Wolfe method recently enjoys a remarkable revival, fuelled by the need of fast and reliable first-order optimization methods in Data Science and other relevant application areas. This review tries to explain the success of this approach by illustrating versatility … Read more