Speed optimization over a path with heterogeneous arc costs

The speed optimization problem over a path aims to find a set of speeds over each arc of the given path to minimize the total cost, while respecting the time-window constraint at each node and speed limits over each arc. In maritime transportation, the cost represents fuel cost or emissions, so study of this problem … Read more

The Fastest Known Globally Convergent First-Order Method for Minimizing Strongly Convex Functions

We design and analyze a novel gradient-based algorithm for unconstrained convex optimization. When the objective function is $m$-strongly convex and its gradient is $L$-Lipschitz continuous, the iterates and function values converge linearly to the optimum at rates $\rho$ and $\rho^2$, respectively, where $\rho = 1-\sqrt{m/L}$. These are the fastest known guaranteed linear convergence rates for … Read more

General parameterized proximal point algorithm with applications in the statistical learning

In the literature, there are a few researches for the proximal point algorithm (PPA) with some parameters in the proximal matrix, especially for the multi-objective optimization problems. Introducing some parameters to the PPA will make it more attractive and flexible. By using the unified framework of the classical PPA and constructing a parameterized proximal matrix, … Read more

Lyapunov rank of polyhedral positive operators

If K is a closed convex cone and if L is a linear operator having L(K) a subset of K, then L is a positive operator on K and L preserves inequality with respect to K. The set of all positive operators on K is denoted by pi(K). If J is the dual of K, … Read more

CONVEX GEOMETRY OF THE GENERALIZED MATRIX-FRACTIONAL FUNCTION

Generalized matrix-fractional (GMF) functions are a class of matrix support functions introduced by Burke and Hoheisel as a tool for unifying a range of seemingly divergent matrix optimization problems associated with inverse problems, regularization and learning. In this paper we dramatically simplify the support function representation for GMF functions as well as the representation of … Read more

A semi-analytical approach for the positive semidefinite Procrustes problem

The positive semidefinite Procrustes (PSDP) problem is the following: given rectangular matrices $X$ and $B$, find the symmetric positive semidefinite matrix $A$ that minimizes the Frobenius norm of $AX-B$. No general procedure is known that gives an exact solution. In this paper, we present a semi-analytical approach to solve the PSDP problem. First, we characterize … Read more

Algorithmic Differentiation for Piecewise Smooth Functions: A Case Study for Robust Optimization

This paper presents a minimization method for Lipschitz continuous, piecewise smooth objective functions based on algorithmic differentiation (AD). We assume that all nondifferentiabilities are caused by abs(), min(), and max(). The optimization method generates successively piecewise linearizations in abs-normal form and solves these local subproblems by exploiting the resulting kink structure. Both, the generation of … Read more

Foundations of gauge and perspective duality

Common numerical methods for constrained convex optimization are predicated on efficiently computing nearest points to the feasible region. The presence of a design matrix in the constraints yields feasible regions with more complex geometries. When the functional components are gauges, there is an equivalent optimization problem—the gauge dual– where the matrix appears only in the … Read more

Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy

A split feasibility formulation for the inverse problem of intensity-modulated radiation therapy (IMRT) treatment planning with dose-volume constraints (DVCs) included in the planning algorithm is presented. It involves a new type of sparsity constraint that enables the inclusion of a percentage-violation constraint in the model problem and its handling by continuous (as opposed to integer) … Read more

Dynamic Data-Driven Estimation of Non-Parametric Choice Models

We study non-parametric estimation of choice models, which was introduced to alleviate unreasonable assumptions in traditional parametric models, and are prevalent in several application areas. Existing literature focuses only on the static observational setting where all of the observations are given upfront, and lacks algorithms that provide explicit convergence rate guarantees or an a priori … Read more