On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions

We consider the gradient (or steepest) descent method with exact line search applied to a strongly convex function with Lipschitz continuous gradient. We establish the exact worst-case rate of convergence of this scheme, and show that this worst-case behavior is exhibited by a certain convex quadratic function. We also extend the result to a noisy … Read more

A progressive barrier derivative-free trust-region algorithm for constrained optimization

We study derivative-free constrained optimization problems and propose a trust-region method that builds linear or quadratic models around the best feasible and and around the best infeasible solutions found so far. These models are optimized within a trust region, and the progressive barrier methodology handles the constraints by progressively pushing the infeasible solutions toward the … Read more

Primal-dual potential reduction algorithm for symmetric programming problems with nonlinear objective functions

We consider a primal-dual potential reduction algorithm for nonlinear convex optimization problems over symmetric cones. The same complexity estimates as in the case of linear objective function are obtained provided a certain nonlinear system of equations can be solved with a given accuracy. This generalizes the result of K. Kortanek, F. Potra and Y.Ye. We … Read more

A Second-Order Information-Based Gradient and Function Sampling Method for Nonconvex, Nonsmooth Optimization

This paper has the goal to propose a gradient and function sampling method that under special circumstances moves superlinearly to a minimizer of a general class of nonsmooth and nonconvex functions. We present global and local convergence theory with illustrative examples that corroborate and elucidate the theoretical results obtained along the manuscript. ArticleDownload View PDF

Exact Worst-case Performance of First-order Methods for Composite Convex Optimization

We provide a framework for computing the exact worst-case performance of any algorithm belonging to a broad class of oracle-based first-order methods for composite convex optimization, including those performing explicit, projected, proximal, conditional and inexact (sub)gradient steps. We simultaneously obtain tight worst-case guarantees and explicit instances of optimization problems on which the algorithm reaches this … Read more

Convergence Analysis of ISTA and FISTA for “Strongly + Semi” Convex Programming

The iterative shrinkage/thresholding algorithm (ISTA) and its faster version FISTA have been widely used in the literature. In this paper, we consider general versions of the ISTA and FISTA in the more general “strongly + semi” convex setting, i.e., minimizing the sum of a strongly convex function and a semiconvex function; and conduct convergence analysis … Read more

Efficient Subgradient Methods for General Convex Optimization

A subgradient method is presented for solving general convex optimization problems, the main requirement being that a strictly-feasible point is known. A feasible sequence of iterates is generated, which converges to within user-specified error of optimality. Feasibility is maintained with a line-search at each iteration, avoiding the need for orthogonal projections onto the feasible region … Read more

The implicit convex feasibility problem and its application to adaptive image denoising

The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. … Read more

Optimization Methods for Large-Scale Machine Learning

This paper provides a review and commentary on the past, present, and future of numerical optimization algorithms in the context of machine learning applications. Through case studies on text classification and the training of deep neural networks, we discuss how optimization problems arise in machine learning and what makes them challenging. A major theme of … Read more

Application of Facial Reduction to \infty$ State Feedback Control Problem

One often encounters numerical difficulties in solving linear matrix inequality (LMI) problems obtained from $H_\infty$ control problems. We discuss the reason from the viewpoint of optimization, and provide necessary and sufficient conditions for LMI problem and its dual not to be strongly feasible. Moreover, we interpret them in terms of control system. In this analysis, … Read more