A support tool for planning classrooms considering social distancing between students

In this paper, we present the online tool salaplanejada.unifesp.br developed to assist the layout planning of classrooms considering the social distance in the context of the COVID-19 pandemic. We address both the allocation problem in rooms where seats are fixed as well as the problem in rooms where seats can be moved freely. For the … Read more

Penetration depth between two convex polyhedra: An efficient global optimization approach

During the detailed design phase of an aerospace program, one of the most important consistency checks is to ensure that no two distinct objects occupy the same physical space. Since exact geometrical modeling is usually intractable, geometry models are discretized, which often introduces small interferences not present in the fully detailed model. In this paper, … Read more

Lower Bounds on the Size of General Branch-and-Bound Trees

A \emph{general branch-and-bound tree} is a branch-and-bound tree which is allowed to use general disjunctions of the form $\pi^{\top} x \leq \pi_0 \,\vee\, \pi^{\top}x \geq \pi_0 + 1$, where $\pi$ is an integer vector and $\pi_0$ is an integer scalar, to create child nodes. We construct a packing instance, a set covering instance, and a … Read more

An Approximation Algorithm for Indefinite Mixed Integer Quadratic Programming

In this paper we give an algorithm that finds an epsilon-approximate solution to a mixed integer quadratic programming (MIQP) problem. The algorithm runs in polynomial time if the rank of the quadratic function and the number of integer variables are fixed. The running time of the algorithm is expected unless P=NP. In order to design … Read more

Beyond local optimality conditions: the case of maximizing a convex function

In this paper, we design an algorithm for maximizing a convex function over a convex feasible set. The algorithm consists of two phases: in phase 1 a feasible solution is obtained that is used as an initial starting point in phase 2. In the latter, a biconvex problem equivalent to the original problem is solved … Read more

Decomposition Methods for Global Solutions of Mixed-Integer Linear Programs

This paper introduces two decomposition-based methods for two-block mixed-integer linear programs (MILPs), which aim to take advantage of separable structures of the original problem by solving a sequence of lower-dimensional MILPs. The first method is based on the $\ell_1$-augmented Lagrangian method (ALM), and the second one is based on a modified alternating direction method of … Read more

Recent Advances in Nonconvex Semi-infinite Programming: Applications and Algorithms

The goal of this literature review is to give an update on the recent developments for semi-infinite programs (SIPs), approximately over the last 20 years. An overview of the different solution approaches and the existing algorithms is given. We focus on deterministic algorithms for SIPs which do not make any convexity assumptions. In particular, we … Read more

Decomposing Optimization-Based Bounds Tightening Problems Via Graph Partitioning

Bounds tightening or domain reduction is a critical refinement technique used in global optimization algorithms for nonlinear and mixed-integer nonlinear programming problems. Bounds tightening can strengthen convex relaxations and reduce the size of branch and bounds trees. An effective but computationally intensive bounds tightening technique is optimization-based bounds tightening (OBBT). In OBBT, each variable is … Read more

TREGO: a Trust-Region Framework for Efficient Global Optimization

Efficient Global Optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, a trust-region framework for EGO (TREGO) is proposed and analyzed. TREGO alternates between regular EGO steps … Read more

Twenty years of continuous multiobjective optimization in the twenty-first century

The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some … Read more