On decomposability of the multilinear polytope and its implications in mixed-integer nonlinear optimization

In this article, we provide an overview of some of our recent results on the facial structure of the multilinear polytope with a special focus on its decomposability properties. Namely, we demonstrate that, in the context of mixed-integer nonlinear optimization, the decomposability of the multilinear polytope plays a key role from both theoretical and algorithmic … Read more

The running intersection relaxation of the multilinear polytope

The multilinear polytope MP_G of a hypergraph G is the convex hull of a set of binary points satisfying a collection of multilinear equations. We introduce the running-intersection inequalities, a new class of facet-defining inequalities for the multilinear polytope. Accordingly, we define a new polyhedral relaxation of MP_G referred to as the running-intersection relaxation and … Read more

The Cost of Not Knowing Enough: Mixed-Integer Optimization with Implicit Lipschitz Nonlinearities

It is folklore knowledge that nonconvex mixed-integer nonlinear optimization problems can be notoriously hard to solve in practice. In this paper we go one step further and drop analytical properties that are usually taken for granted in mixed-integer nonlinear optimization. First, we only assume Lipschitz continuity of the nonlinear functions and additionally consider multivariate implicit … Read more

Subdeterminants and Concave Integer Quadratic Programming

We consider the NP-hard problem of minimizing a separable concave quadratic function over the integral points in a polyhedron, and we denote by D the largest absolute value of the subdeterminants of the constraint matrix. In this paper we give an algorithm that finds an epsilon-approximate solution for this problem by solving a number of … Read more

Tightening McCormick Relaxations Toward Global Solution of the ACOPF Problem

We show that a strong upper bound on the objective of the alternating current optimal power flow (ACOPF) problem can significantly improve the effectiveness of optimization-based bounds tightening (OBBT) on a number of relaxations. We additionally compare the performance of relaxations of the ACOPF problem, including the rectangular form without reference bus constraints, the rectangular … Read more

An Active Set Algorithm for Robust Combinatorial Optimization Based on Separation Oracles

We address combinatorial optimization problems with uncertain coefficients varying over ellipsoidal uncertainty sets. The robust counterpart of such a problem can be rewritten as a second-oder cone program (SOCP) with integrality constraints. We propose a branch-and-bound algorithm where dual bounds are computed by means of an active set algorithm. The latter is applied to the … Read more

Rigorous global filtering methods with interval unions

This paper presents rigorous filtering methods for constraint satisfaction problems based on the interval union arithmetic. Interval unions are finite sets of closed and disjoint intervals that generalize the interval arithmetic. They allow a natural representation of the solution set of interval powers, trigonometric functions and the division by intervals containing zero. We show that … Read more

User Manual for BBCPOP: A Sparse Doubly Nonnegative Relaxation of Polynomial Optimization Problems with Binary, Box and Complementarity Constraints

BBCPOP proposed in [4] is a MATLAB implementation of a hierarchy of sparse doubly nonnegative (DNN) relaxations of a class of polynomial optimization (minimization) problems (POPs) with binary, box and complementarity constraints. Given a POP in the class and a relaxation order (or a hierarchy level), BBCPOP constructs a simple conic optimization problem (COP), which … Read more

A computational study of global optimization solvers on two trust region subproblems

One of the relevant research topics to which Chris Floudas contributed was quadratically constrained quadratic programming (QCQP). This paper considers one of the simplest hard cases of QCQP, the two trust region subproblem (TTRS). In this case, one needs to minimize a quadratic function constrained by the intersection of two ellipsoids. The Lagrangian dual of … Read more