Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major … Read more

Solving sparse polynomial optimization problems with chordal structure using the sparse, bounded-degree sum-of-squares hierarchy

The sparse bounded degree sum-of-squares (sparse-BSOS) hierarchy of Weisser, Lasserre and Toh [arXiv:1607.01151,2016] constructs a sequence of lower bounds for a sparse polynomial optimization problem. Under some assumptions, it is proven by the authors that the sequence converges to the optimal value. In this paper, we modify the hierarchy to deal with problems containing equality … Read more

Comparison of Lasserre’s measure–based bounds for polynomial optimization to bounds obtained by simulated annealing

We consider the problem of minimizing a continuous function f over a compact set K. We compare the hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864-885] to bounds that may be obtained from simulated annealing. We show that, when f is a polynomial and K a convex body, … Read more

A Branch and Bound Algorithm for Nonconvex Quadratic Optimization with Ball and Linear Constraints

We suggest a branch and bound algorithm for solving continuous optimization problems where a (generally nonconvex) objective function is to be minimized under nonconvex inequality constraints which satisfy some specific solvability assumptions. The assumptions hold for some special cases of nonconvex quadratic optimization problems. We show how the algorithm can be applied to the problem … Read more

MultiGLODS: Global and Local Multiobjective Optimization using Direct Search

The optimization of multimodal functions is a challenging task, in particular when derivatives are not available for use. Recently, in a directional direct search framework, a clever multistart strategy was proposed for global derivative-free optimization of single objective functions. The goal of the current work is to generalize this approach to the computation of global … Read more

Simultaneous convexification of bilinear functions over polytopes with application to network interdiction

We study the simultaneous convexification of graphs of bilinear functions that contain bilinear products between variables x and y, where x belongs to a general polytope and y belongs to a simplex. We propose a constructive procedure to obtain a linear description of the convex hull of the resulting set. This procedure can be applied … Read more

Optimal Price Zones of Electricity Markets: A Mixed-Integer Multilevel Model and Global Solution Approaches

Mathematical modeling of market design issues in liberalized electricity markets often leads to mixed-integer nonlinear multilevel optimization problems for which no general-purpose solvers exist and which are intractable in general. In this work, we consider the problem of splitting a market area into a given number of price zones such that the resulting market design … Read more

Characterizations of Mixed Binary Convex Quadratic Representable Sets

Representability results play a fundamental role in optimization since they provide characterizations of the feasible sets that arise from optimization problems. In this paper we study the sets that appear in the feasibility version of mixed binary convex quadratic optimization problems. We provide a complete characterization of the sets that can be obtained as the … Read more

Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints

We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current model of the transmission network, which is a nonconvex mixed-integer nonlinear programming (MINLP) problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. … Read more

Generalized Symmetric ADMM for Separable Convex Optimization

The Alternating Direction Method of Multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a Generalized Symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two … Read more