An Efficient Exact Algorithm for the Vertex hBcCenter Problem and Computational Experiments for Different Set Covering Subproblems

We develop a simple and yet very efficient exact algorithm for the problem of locating $p$ facilities and assigning clients to them in order to minimize the maximum distance between a client and the facility to which it is assigned. The algorithm iteratively sets a maximum distance value within which it tries to assign all … Read more

On Robust 0-1 Optimization with Uncertain Cost Coefficients

Based on the recent approach of Bertsimas and Sim \cite{bs1, bs2} to robust optimization in the presence of data uncertainty, we prove a bound on the probability that the robust solution gives an objective function value worse than the robust objective function value, under the assumption that only cost coefficients are subject to uncertainty. A … Read more

Semidefinite programming and integer programming

We survey how semidefinite programming can be used for finding good approximative solutions to hard combinatorial optimization problems. CitationPreliminary version appeared as Report PNA-R0210, CWI, Amsterdam, April 2002. To appear as Chapter in the Handbook on Discrete Optimization, K. Aardal, G. Nemhauser, R. Weismantel, eds., Elsevier Publishers.ArticleDownload View PDF

Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization

We prove a sufficient global optimality condition for quadratic optimization with quadratic constraints where the variables are allowed to take -1 and 1 values. We extend the condition to quadratic programs with matrix variables and orthogonality conditions, and in particular, to the quadratic assignment problem. CitationBilkent University Technical Report, September 2002.ArticleDownload View PDF

Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope

Hierarchies of semidefinite relaxations for $0/1$ polytopes have been constructed by Lasserre (2001a) and by Lov\’asz and Schrijver (1991), permitting to find the cut polytope of a graph on $n$ nodes in $n$ steps. We show that $\left\lceil {n\over 2} \right\rceil$ iterations are needed for finding the cut polytope of the complete graph $K_n$. CitationMathematics … Read more

Search and Cut: New Class of Cutting Planes for 0-1 Programming

The basic principle of the cutting plane techniques is to chop away the portions of the solution space of the linear programming relaxation of an integer program that contain no integer solutions. this is true for both Gomory’s cutting planes, and other more recent cuts based on valid inequalities. Obtaining a partial or full description … Read more

Clique Family Inequalities for the Stable Set Polytope of Quasi-Line Graphs

In one of fundamental work in combinatorial optimization Edmonds gave a complete linear description of the matching polytope. Matchings in a graph are equivalent to stable sets its line graph. Also the neighborhood of any vertex in a line graph partitions into two cliques: graphs with this latter property are called quasi-line graphs. Quasi-line graphs … Read more

Mesh Topology Design in Overlay Virtual Private Networks

We study the mesh topology design problem in overlay virtual private networks. Given a set of customer nodes and associated traffic matrix, tunnels that are connecting node pairs through a public service provider network subject to degree constraints are determined so as to minimize total multihopped traffic. Valid inequalities strengthening the LP relaxation and a … Read more

A binary LP model to the facility layout problem

In facility layout problems, a major concern is the optimal design or remodeling of the facilities of an organization. The decision-maker’s objective is to arrange the facility in an optimal way, so that the interaction among functions (i.e. machines, inventories, persons) and places (i.e. offices, work locations, depots) is efficient. A simple pure-binary LP model … Read more

An explicit equivalent positive semidefinite program for nonlinear 0-1 programs

We consider the general nonlinear optimization problem in 0-1 variables and provide an explicit equivalent positive semidefinite program in $2^n-1$ variables. The optimal values of both problems are identical. From every optimal solution of the former one easily find an optimal solution of the latter and conversely, from every solution of the latter one may … Read more