On the Rational Polytopes with Chvatal Rank 1

We study the following problem: given a rational polytope with Chvatal rank 1, does it contain an integer point? Boyd and Pulleyblank observed that this problem is in the complexity class NP ∩ co-NP, an indication that it is probably not NP-complete. It is open whether there is a polynomial time algorithm to solve the … Read more

On the NP-hardness of deciding emptiness of the split closure of a rational polytope in the 0,1 hypercube

Split cuts are prominent general-purpose cutting planes in integer programming. The split closure of a rational polyhedron is what is obtained after intersecting the half-spaces defined by all the split cuts for the polyhedron. In this paper, we prove that deciding whether the split closure of a rational polytope is empty is NP-hard, even when … Read more

Split cuts from sparse disjunctions

Split cuts are arguably the most effective class of cutting planes within a branch-and-cut framework for solving general Mixed-Integer Programs (MIP). Sparsity, on the other hand, is a common characteristic of MIP problems, and it is an important part of why the simplex method works so well inside branch-and-cut. In this work, we evaluate the … Read more

Cutting Planes by Projecting Interior Points onto Polytope Facets

Given a point x inside a polytope P and a direction d, the projection of x along d asks to find the maximum step length t such that x+td is feasible; we say x+td is a pierce point because it belongs to the boundary of P. We address this projection sub-problem with arbitrary interior points … Read more

All Cyclic Group Facets Inject

We give a variant of Basu–Hildebrand–Molinaro’s approximation theorem for continuous minimal valid functions for Gomory–Johnson’s infinite group problem by piecewise linear two-slope extreme functions [Minimal cut-generating functions are nearly extreme, IPCO 2016]. Our theorem is for piecewise linear minimal valid functions that have only rational breakpoints (in 1/q Z for some q ∈ N) and … Read more

Scanning integer points with lex-inequalities: A finite cutting plane algorithm for integer programming with linear objective

We consider the integer points in a unimodular cone K ordered by a lexicographic rule defined by a lattice basis. To each integer point x in K we associate a family of inequalities (lex-inequalities) that defines the convex hull of the integer points in K that are not lexicographically smaller than x. The family of … Read more

On the impact of running intersection inequalities for globally solving polynomial optimization problems

We consider global optimization of nonconvex problems whose factorable reformulations contain a collection of multilinear equations. Important special cases include multilinear and polynomial optimization problems. The multilinear polytope is the convex hull of a set of binary points satisfying a number of multilinear equations. Running intersection inequalities are a family of facet-defining inequalities for the … Read more

New facets for the consecutive ones polytope

A 0/1 matrix has the Consecutive Ones Property if a permutation of its columns exists such that the ones appear consecutively in each row. In many applications, one has to find a matrix having the consecutive ones property and optimizing a linear objective function. For this problem, literature proposes, among other approaches, an Integer Linear … Read more

Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs

In this paper, we derive (partial) convex hull for deterministic multi-constraint polyhedral conic mixed integer sets with multiple integer variables using conic mixed integer rounding (CMIR) cut-generation procedure of Atamtürk and Narayanan (Math Prog 122:1–20, 2008), thereby extending their result for a simple polyhedral conic mixed integer set with single constraint and one integer variable. … Read more

On the Consistent Path Problem

The application of decision diagrams in combinatorial optimization has proliferated in the last decade. In recent years, authors have begun to investigate how to utilize not one, but a set of diagrams, to model constraints and objective function terms. Optimizing over a collection of decision diagrams, the problem we refer to as the consistent path … Read more