Polyhedral results for a class of cardinality constrained submodular minimization problems
Motivated by concave cost combinatorial optimization problems, we study the following mixed integer nonlinear set: P = {(w,x) : w >= f(a’x), e’x
Motivated by concave cost combinatorial optimization problems, we study the following mixed integer nonlinear set: P = {(w,x) : w >= f(a’x), e’x
The plethora of research on NP-hard parallel machine scheduling problems is focused on heuristics due to the theoretically and practically challenging nature of these problems. Only a handful of exact approaches are available in the literature, and most of these suffer from scalability issues. Moreover, the majority of the papers on the subject are restricted … Read more
When addressing the maximum stable set problem on a graph G = (V,E), rank inequalities prescribe that, for any subgraph G[U] induced by U ⊆ V , at most as many vertices as the stability number of G[U] can be part of a stable set of G. These inequalities are very general, as many of … Read more
In this paper, we introduce a generalization of the continuous mixing set (which we refer to as the continuous n-mixing set). This set is closely related to the feasible set of the multi-module capacitated lot-sizing (MML) problem with(out) backlogging. We develop new classes of valid inequalities for this set, referred to as n’-step cycle inequalities, … Read more
This paper introduces a new vehicle routing problem transferring one commodity between customers with a capacitated vehicle that can visit a customer more than once,although a maximum number of visits must be respected. It generalizes the capacitated vehicle routing problem with split demands and some other variants recently addressed in the literature. We model the … Read more
We develop foundational tools for classifying the extreme valid functions for the k-dimensional infinite group problem. In particular, (1) we present the general regular solution to Cauchy’s additive functional equation on bounded convex domains. This provides a k-dimensional generalization of the so-called interval lemma, allowing us to deduce affine properties of the function from certain … Read more
With stochastic integer programming as the motivating application, we investigate techniques to use integrality constraints to obtain improved cuts within a Benders decomposition algorithm. We compare the effect of using cuts in two ways: (i) cut-and-project, where integrality constraints are used to derive cuts in the extended variable space, and Benders cuts are then used … Read more
We schedule appointments with random service durations on multiple servers with operating time limits. We minimize the costs of operating servers and serving appointments, subject to a joint chance constraint limiting the risk of server overtime. Using finite samples of the uncertainty, we formulate the problem as a mixed-integer linear program, and propose a two-stage … Read more
Many important NP-hard combinatorial problems can be efficiently approximated using semidefinite programming relaxations. We propose a new hierarchy of semidefinite relaxations for classes of such problems that based on graphs and for which the projection of the problem onto a subgraph shares the same structure as the original problem. This includes the well-studied max-cut and … Read more
We propose the bound-optimal cutting plane method. It is a new paradigm for cutting plane generation in Mixed Integer Programming allowing for the simultaneous generation of k cuts which, when added to the current Linear Programming elaxation, yield the largest bound improvement. By Linear Programming duality arguments and standard linearization techniques we show that, for … Read more