On the generation of Metric TSP instances with a large integrality gap by branch-and-cut.

This paper introduces a computational method for generating metric Travelling Salesperson Problem (TSP) instances having a large integrality gap. The method is based on the solution of an NP-hard problem, called IH-OPT, that takes in input a fractional solution of the Subtour Elimination Problem (SEP) on a TSP instance and compute a TSP instance having … Read more

Integer Optimization Model and Algorithm for the Stem Cell Culturing Problem

In this paper, we present a novel scheduling problem, the stem cell culturing problem (SCP), which is identified in an attempt to improve the productivity of a manufacturing system producing a commercialized autologous stem cell therapeutic product for treating an incurable disease. For a given therapeutic product along with the corresponding manufacturing process, which is … Read more

Determining locations and layouts for parcel lockers to support supply chain viability at the last mile

The pandemic caused by the corona virus SARS-CoV-2 raised many new challenges for humanity. For instance, governments imposed regulations such as lockdowns, resulting in supply chain shocks at different tiers. Additionally, delivery services reached their capacity limits because the demand for mail orders soared temporarily during the lockdowns. We argue that one option to support … Read more

Learning Optimal Prescriptive Trees from Observational Data

We consider the problem of learning an optimal prescriptive tree (i.e., an interpretable treatment assignment policy in the form of a binary tree) of moderate depth, from observational data. This problem arises in numerous socially important domains such as public health and personalized medicine, where interpretable and data-driven interventions are sought based on data gathered … Read more

MILP models for the continuous Berth Allocation and Quay Crane Assignment Problem considering crane movement and setup times

In this technical report we present several Mixed Integer Linear Programming (MILP) models for the Berth Allocation and Quay Crane Assignment Problem (BACASP) considering crane movement and setup time (from now on: BACASP-S). First, we propose a MILP for the continuous-quay time-invariant BACASP in which both berthing time and position variables are continuous. Then, we … Read more

Interdicting Low-Diameter Cohesive Subgroups in Large-Scale Social Networks

The s-clubs model cohesive social subgroups as vertex subsets that induce subgraphs of diameter at most s. In defender-attacker settings, for low values of s, they can represent tightly-knit communities whose operation is undesirable for the defender. For instance, in online social networks, large communities of malicious accounts can effectively propagate undesirable rumors. In this … Read more

On Piecewise Linear Approximations of Bilinear Terms: Structural Comparison of Univariate and Bivariate Mixed-Integer Programming Formulations

Bilinear terms naturally appear in many optimization problems. Their inherent nonconvexity typically makes them challenging to solve. One approach to tackle this difficulty is to use bivariate piecewise linear approximations for each variable product, which can be represented via mixed-integer linear programming (MIP) formulations. Alternatively, one can reformulate the variable products as a sum of … Read more

A Joint Demand and Supply Management Approach to Large Scale Urban Evacuation Planning: Evacuate or Shelter-in-Place, Staging and Dynamic Resource Allocation

Urban evacuation management is challenging to implement as it requires planning and coordination over a large geographical area. To address these challenges and to bolster evacuation planning and management, joint supply and demand management strategies should be considered. In this study, we explore and jointly optimize evacuate or shelter-in-place, dynamic resource allocation, and staging decisions … Read more

High-Rank Matrix Completion by Integer Programming

In the High-Rank Matrix Completion (HRMC) problem, we are given a collection of n data points, arranged into columns of a matrix X, and each of the data points is observed only on a subset of its coordinates. The data points are assumed to be concentrated near a union of low-dimensional subspaces. The goal of … Read more

Solving the Home Service Assignment, Routing, and Appointment Scheduling (H-SARA) problem with Uncertainties

The Home Service Assignment, Routing, and Appointment scheduling (H-SARA) problem integrates the strategical fleet-sizing, tactical assignment, operational vehicle routing and scheduling subproblems at different decision levels, with a single period planning horizon and uncertainty (stochasticity) from the service duration, travel time, and customer cancellation rate. We propose a two-stage stochastic mixed-integer linear programming model for … Read more