An Adaptive Patch Approximation Algorithm for Bicriteria Convex Mixed Integer problems

Pareto frontiers of bicriteria continuous convex problems can be efficiently computed and optimal theoretical performance bounds have been established. In the case of bicriteria mixed-integer problems, the approximation of the Pareto frontier becomes, however, significantly harder. In this paper, we propose a new algorithm for approximating the Pareto frontier of bicriteria mixed-integer programs with convex … Read more

The confined primal integral

It is a challenging task to fairly compare local solvers and heuristics against each other and against global solvers. How does one weigh a faster termination time against a better quality of the found solution? In this paper, we introduce the confined primal integral, a new performance measure that rewards a balance of speed and … Read more

Conflict Analysis for MINLP

The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems … Read more

Improved optimization models for potential-driven network flow problems via ASTS orientations

The class of potential-driven network flow problems provides important models for a range of infrastructure networks that lead to hard-to-solve MINLPs in real-world applications. On large-scale meshed networks the relaxations usually employed are rather weak due to cycles in the network. To address this situation, we introduce the concept of ASTS orientations, a generalization of … Read more

A Decision Space Algorithm for Multiobjective Convex Quadratic Integer Optimization

We present a branch-and-bound algorithm for minimizing multiple convex quadratic objective functions over integer variables. Our method looks for efficient points by fixing subsets of variables to integer values and by using lower bounds in the form of hyperplanes in the image space derived from the continuous relaxations of the restricted objective functions. We show … Read more

Ideal formulations for constrained convex optimization problems with indicator variables.

Motivated by modern regression applications, in this paper, we study the convexification of a class of convex optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear non-separable objective, indicator variables, and combinatorial constraints. Specifically, we give … Read more

The ratio-cut polytope and K-means clustering

We introduce the ratio-cut polytope defined as the convex hull of ratio-cut vectors corresponding to all partitions of $n$ points in $\R^m$ into at most $K$ clusters. This polytope is closely related to the convex hull of the feasible region of a number of clustering problems such as K-means clustering and spectral clustering. We study … Read more

Mixed-Integer Optimal Control for Multimodal Chromatography

Multimodal chromatography is a powerful tool in the downstream processing of biopharmaceuticals. To fully benefit from this technology, an efficient process strategy must be determined beforehand. To facilitate this task, we employ a recent mechanistic model for multimodal chromatography, which takes salt concentration and pH into account, and we present a mathematical framework for the … Read more

Improving relaxations for potential-driven network flow problems via acyclic flow orientations

The class of potential-driven network flow problems provides important models for a range of infrastructure networks. For real-world applications, they need to be combined with integer models for switching certain network elements, giving rise to hard-to-solve MINLPs. We observe that on large-scale real-world meshed networks the usually employed relaxations are rather weak due to cycles … Read more

Optimality conditions in discrete-continuous nonlinear optimization

This paper presents necessary and sufficient optimality conditions for discrete-continuous nonlinear optimization problems including mixed-integer nonlinear problems. This theory does not utilize an extension of the Lagrange theory of continuous optimization but it works with certain max functionals for a separation of two sets where one of them is nonconvex. These functionals have the advantage … Read more