The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace

The integration of Unmanned Aircraft Systems (UAS) into civil airspace is one of the most challenging problems for the automation of the Controlled Airspace, and the optimization of the UAS route is a key step for this process. In this paper, we optimize the planning phase of a UAS mission that consists of departing from … Read more

Solving Vertex Coloring Problems as Maximum Weight Stable Set Problems

In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In this work we solve four different coloring problems formulated as Maximum Weight Stable Set … Read more

Min-max-min Robust Combinatorial Optimization

The idea of k-adaptability in two-stage robust optimization is to calculate a fixed number k of second-stage policies here-and-now. After the actual scenario is revealed, the best of these policies is selected. This idea leads to a min-max-min problem. In this paper, we consider the case where no first stage variables exist and propose to … Read more

A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method

We propose a cutting-plane approach (namely, Benders decomposition) for a class of capacitated multi-period facility location problems. The novelty of this approach lies on the use of a specialized interior-point method for solving the Benders subproblems. The primal block-angular structure of the resulting linear optimization problems is exploited by the interior-point method, allowing the (either … Read more

Solving the Probabilistic Traveling Salesman Problem by Linearising a Quadratic Approximation

The Probabilistic Traveling Salesman Problem, introduced in 1985 by Jaillet, is one of the fundamental stochastic versions of the Traveling Salesman Problem: After the tour is chosen, each vertex is deleted with given probability 1-p. The eliminated vertices are bypassed which leads to shorter tours. The aim is to minimize the expected tour length. The … Read more

Embedding Formulations and Complexity for Unions of Polyhedra

It is well known that selecting a good Mixed Integer Programming (MIP) formulation is crucial for an effective solution with state-of-the art solvers. While best practices and guidelines for constructing good formulations abound, there is rarely a systematic construction leading to the best possible formulation. We introduce embedding formulations and complexity as a new MIP … Read more

A Polyhedral Study of the Integrated Minimum-Up/-Down Time and Ramping Polytope

In this paper, we consider the polyhedral structure of the integrated minimum-up/-down time and ramping polytope for the unit commitment problem. Our studied generalized polytope includes minimum-up/-down time constraints, generation ramp-up/-down rate constraints, logical constraints, and generation upper/lower bound constraints. We derive strong valid inequalities by utilizing the structures of the unit commitment problem, and … Read more

New computer-based search strategies for extreme functions of the Gomory–Johnson infinite group problem

We describe new computer-based search strategies for extreme functions for the Gomory–Johnson infinite group problem. They lead to the discovery of new extreme functions, whose existence settles several open questions. ArticleDownload View PDF

Regularization vs. Relaxation: A convexification perspective of statistical variable selection

Variable selection is a fundamental task in statistical data analysis. Sparsity-inducing regularization methods are a popular class of methods that simultaneously perform variable selection and model estimation. The central problem is a quadratic optimization problem with an $\ell_0$-norm penalty. Exactly enforcing the $\ell_0$-norm penalty is computationally intractable for larger scale problems, so different sparsity-inducing penalty … Read more

Stronger Multi-Commodity Flow Formulations of the (Capacitated) Sequential Ordering Problem

The “sequential ordering problem” (SOP) is the generalisation of the asymmetric travelling salesman problem in which there are precedence relations between pairs of nodes. Hernández & Salazar introduced a “multi-commodity flow” (MCF) formulation for a generalisation of the SOP in which the vehicle has a limited capacity. We strengthen this MCF formulation by fixing variables … Read more