Some Results on the Strength of Relaxations of Multilinear Functions

We study approaches for obtaining convex relaxations of global optimization problems containing multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the problem to contain only bilinear terms and then relaxes each term … Read more

On semidefinite programming relaxations of maximum k-section

We derive a new semidefinite programming bound for the maximum k-section problem. For k=2 (i.e. for maximum bisection), the new bound is least as strong as the well-known bound by Frieze and Jerrum [A. Frieze and M. Jerrum. Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION. Algorithmica, 18(1): 67-81, 1997]. For k > 2 … Read more

Cutting Stock with Bounded Open Stacks: a New Integer Linear Programming Model

We address a 1-dimensional cutting stock problem where, in addition to trim-loss minimization, we require that the set of cutting patterns forming the solution can be sequenced so that the number of stacks of parts maintained open throughout the process never exceeds a given $s$. For this problem, we propose a new integer linear programming … Read more

New concave penalty functions for improving the Feasibility Pump

Mixed-Integer optimization represents a powerful tool for modeling many optimization problems arising from real-world applications. The Feasibility pump is a heuristic for finding feasible solutions to mixed integer linear problems. In this work, we propose a new feasibility pump approach using concave non-differentiable penalty functions for measuring solution integrality. We present computational results on binary … Read more

Coverings and Matchings in r-Partite Hypergraphs

Ryser’s conjecture postulates that, for $r$-partite hypergraphs, $\tau \leq (r-1) \nu$ where $\tau$ is the covering number of the hypergraph and $\nu$ is the matching number. Although this conjecture has been open since the 1960s, researchers have resolved it for special cases such as for intersecting hypergraphs where $r \leq 5$. In this paper, we … Read more

A Faster Algorithm for Quasi-convex Integer Polynomial Optimization

We present a faster exponential-time algorithm for integer optimization over quasi-convex polynomials. We study the minimization of a quasi-convex polynomial subject to s quasi-convex polynomial constraints and integrality constraints for all variables. The new algorithm is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). A lower time complexity is … Read more

On mixed-integer sets with two integer variables

We show that every facet-defining inequality of the convex hull of a mixed-integer polyhedral set with two integer variables is a crooked cross cut (which we defined recently in another paper). We then extend this observation to show that crooked cross cuts give the convex hull of mixed-integer sets with more integer variables provided that … Read more

Symmetry-exploiting cuts for a class of mixed-0/1 second order cone programs

We will analyze mixed 0/1 second order cone programs where the fractional and binary variables are solely coupled via the conic constraints. For this special type of mixed-integer second order cone programs we devise a cutting-plane framework based on the generalized Benders cut and an implicit Sherali-Adams reformulation. We show that the resulting cuts are … Read more

A probabilistic comparison of split and type 1 triangle cuts for two row mixed-integer programs

We provide a probabilistic comparison of split and type 1 triangle cuts for mixed-integer programs with two rows and two integer variables. Under a simple probabilistic model of the problem parameters, we show that a simple split cut, i.e. a Gomory cut, is more likely to be better than a type 1 triangle cut in … Read more

Explicit Convex and Concave Envelopes through Polyhedral Subdivisions

In this paper, we derive explicit characterizations of convex and concave envelopes of several nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be constructed easily. In particular, we use these techniques to derive, in closed-form, the concave envelopes of … Read more