DERIVATIVE-FREE METHODS FOR BOUND CONSTRAINED MIXED-INTEGER OPTIMIZATION

We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems … Read more

Symmetry in Scheduling Problems

The presence of symmetry is common in certain types of scheduling problems. Symmetry can occur when one is scheduling a collection of jobs on multiple identical machines, or if one is determining production schedules for identical machines. General symmetry-breaking methods can be strengthened by taking advantage of the special structure of the symmetry group in … Read more

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation

Dantzig-Wolfe decomposition is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs) in practice. However, the method is not part of any state-of-the-art MIP solver: it needs tailoring to the particular problem; the typical bordered block-diagonal matrix structure determines the decomposition; the resulting column generation subproblems need to be solved efficiently; … Read more

The Maximum k-Colorable Subgraph Problem and Orbitopes

Given an undirected node-weighted graph and a positive integer k, the maximum k-colorable subgraph probem is to select a k-colorable induced subgraph of largest weight. The natural integer programming formulation for this problem exhibits a high degree of symmetry which arises by permuting the color classes. It is well known that such symmetry has negative … Read more

The Set Covering Problem Revisited: An Empirical Study of the Value of Dual Information

This paper investigates the role of dual information on the performances of heuristics designed for solving the set covering problem. After solving the linear programming relaxation of the problem, the dual information is used to obtain the two main approaches proposed here: (i) The size of the original problem is reduced and then the resulting … Read more

Random half-integral polytopes

We show that half-integral polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as Ω(logn/loglogn) with positive probability — even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank … Read more

Effective Separation of Disjunctive Cuts for Convex Mixed Integer Nonlinear Programs

We describe a computationally effective method for generating disjunctive inequalities for convex mixed-integer nonlinear programs (MINLPs). The method relies on solving a sequence of cut-generating linear programs, and in the limit will generate an inequality as strong as can be produced by the cut-generating nonlinear program suggested by Stubbs and Mehrotra. Using this procedure, we … Read more

Optimizing the Layout of Proportional Symbol Maps: Polyhedra and Computation

Proportional symbol maps are a cartographic tool to assist in the visualization and analysis of quantitative data associated with specific locations, such as earthquake magnitudes, oil well production, and temperature at weather stations. As the name suggests, symbol sizes are proportional to the magnitude of the physical quantities that they represent. We present two novel … Read more

The Gomory-Chvatal closure of a non-rational polytope is a rational polytope

The question as to whether the Gomory-Chvatal closure of a non-rational polytope is a polytope has been a longstanding open problem in integer programming. In this paper, we answer this question in the affirmative, by combining ideas from polyhedral theory and the geometry of numbers. Article Download View The Gomory-Chvatal closure of a non-rational polytope … Read more

Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach

We consider in this paper quadratic programming problems with cardinality and minimum threshold constraints which arise naturally in various real-world applications such as portfolio selection and subset selection in regression. We propose a new semidefinite program (SDP) approach for computing the “best” diagonal decomposition that gives the tightest continuous relaxation of the perspective reformulation. We … Read more