Strong Valid Inequalities for Orthogonal Disjunctions and Bilinear Covering Sets

In this paper, we develop a convexification tool that enables the construction of convex hulls for orthogonal disjunctive sets using convex extensions and disjunctive programming techniques. A distinguishing feature of our technique is that, unlike most applications of disjunctive programming, it does not require the introduction of new variables in the relaxation. We develop and … Read more

A Level-3 Reformulation-linearization Technique Based Bound for the Quadratic Assignment Problem

We apply the level-3 Reformulation Linearization Technique (RLT3) to the Quadratic Assignment Problem (QAP). We then present our experience in calculating lower bounds using an essentially new algorithm, based on this RLT3 formulation. This algorithm is not guaranteed to calculate the RLT3 lower bound exactly, but approximates it very closely and reaches it in some … Read more

A Note on Split Rank of Intersection Cuts

In this note, we present a simple geometric argument to determine a lower bound on the split rank of intersection cuts. As a first step of this argument, a polyhedral subset of the lattice-free convex set that is used to generate the intersection cut is constructed. We call this subset the restricted lattice-free set. It … Read more

On mixing inequalities: rank, closure and cutting plane proofs

We study the mixing inequalities which were introduced by Gunluk and Pochet (2001). We show that a mixing inequality which mixes n MIR inequalities has MIR rank at most n if it is a type I mixing inequality and at most n-1 if it is a type II mixing inequality. We also show that these … Read more

Dynamic Subgradient Methods

Lagrangian relaxation is commonly used to generate bounds for mixed-integer linear programming problems. However, when the number of dualized constraints is very large (exponential in the dimension of the primal problem), explicit dualization is no longer possible. In order to reduce the dual dimension, different heuristics were proposed. They involve a separation procedure to dynamically … Read more

Improved strategies for branching on general disjunctions

Within the context of solving Mixed-Integer Linear Programs by a Branch-and-Cut algorithm, we propose a new strategy for branching. Computational experiments show that, on the majority of our test instances, this approach enumerates fewer nodes than traditional branching. On average, on instances that contain both integer and continuous variables the number of nodes in the … Read more

Convex Relaxations of Non-Convex Mixed Integer Quadratically Constrained Programs: Extended Formulations

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, … Read more

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

Integer programs defined by two equations with two free integer variables and nonnegative continuous variables have three types of nontrivial facets: split, triangle or quadrilateral inequalities. In this paper, we compare the strength of these three families of inequalities. In particular we study how well each family approximates the integer hull. We show that, in … Read more

Branching and bounds tightening techniques for non-convex MINLP

Many industrial problems can be naturally formulated using Mixed Integer Nonlinear Programming (MINLP). Motivated by the demand for Open-Source solvers for real-world MINLP problems, we have developed a spatial Branch-and-Bound software package named COUENNE (Convex Over- and Under-ENvelopes for Nonlinear Estimation). In this paper, we present the structure of couenne and discuss in detail our … Read more

The N – k Problem in Power Grids: New Models, Formulations and Computation

Given a power grid modeled by a network together with equations describing the power flows, power generation and consumption, and the laws of physics, the so-called N – k problem asks whether there exists a set of k or fewer arcs whose removal will cause the system to fail. We present theoretical results and computation … Read more