Strong Optimal Classification Trees

Decision trees are among the most popular machine learning models and are used routinely in applications ranging from revenue management and medicine to bioinformatics. In this paper, we consider the problem of learning optimal binary classification trees with univariate splits. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality … Read more

Multi-market Portfolio Optimization with Conditional Value at Risk

In this paper we propose an optimization framework for multi-markets portfolio management, where a central headquarter relies upon local affiliates for the market-wise selection of investment options. Being averse to risk, the headquarter endogenously selects the maximum expected loss (conditional value at risk) for the affiliates, who respond designing portfolios and selecting management fees. In … Read more

Graph Coloring with Decision Diagrams

We introduce an iterative framework for solving graph coloring problems using decision diagrams. The decision diagram compactly represents all possible color classes, some of which may contain edge conflicts. In each iteration, we use a constrained minimum network flow model to compute a lower bound and identify conflicts. Infeasible color classes associated with these conflicts … Read more

Worst-case analysis of clique MIPs

The usual integer programming formulation for the maximum clique problem has several undesirable properties, including a weak LP relaxation, a quadratic number of constraints and nonzeros when applied to sparse graphs, and poor guarantees on the number of branch-and-bound nodes needed to solve it. With this as motivation, we propose new mixed integer programs (MIPs) … Read more

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization

Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and … Read more

Efficient presolving methods for the influence maximization problem in social networks

We consider the influence maximization problem (IMP) which asks for identifying a limited number of key individuals to spread influence in a social network such that the expected number of influenced individuals is maximized. The stochastic maximal covering location problem (SMCLP) formulation is a mixed integer programming formulation that effectively approximates the IMP by the … Read more

Supermodularity and valid inequalities for quadratic optimization with indicators

We study the minimization of a rank-one quadratic with indicators and show that the underlying set function obtained by projecting out the continuous variables is supermodular. Although supermodular minimization is, in general, difficult, the specific set function for the rank-one quadratic can be minimized in linear time. We show that the convex hull of the … Read more

Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications

We consider a general conic mixed-binary set where each homogeneous conic constraint involves an affine function of independent continuous variables and an epigraph variable associated with a nonnegative function, $f_j$, of common binary variables. Sets of this form naturally arise as substructures in a number of applications including mean-risk optimization, chance-constrained problems, portfolio optimization, lot-sizing … Read more

An exact (re)optimization framework for real-time traffic management

In real-time traffic management, a new schedule for the vehicles must be computed whenever a deviation from the current plan is detected, or periodically after some time. If this time interval is relatively small, then each two consecutive instances are likely to be similar. We exploit this aspect to derive an exact reoptimization framework for … Read more

Unbiased Subdata Selection for Fair Classification: A Unified Framework and Scalable Algorithms

As an important problem in modern data analytics, classification has witnessed varieties of applications from different domains. Different from conventional classification approaches, fair classification concerns the issues of unintentional biases against the sensitive features (e.g., gender, race). Due to high nonconvexity of fairness measures, existing methods are often unable to model exact fairness, which can … Read more