Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets: Theory and Computation

We propose a method to generate cutting-planes from multiple covers of knapsack constraints. The covers may come from different knapsack inequalities if the weights in the inequalities form a totally-ordered set. Thus we introduce and study the structure of a totally-ordered multiple knapsack set. The valid multi-cover inequalities we derive for its convex hull have … Read more

Face Dimensions of General-Purpose Cutting Planes for Mixed-Integer Linear Programs

Cutting planes are a key ingredient to successfully solve mixed-integer linear programs. For specific problems, their strength is often theoretically assessed by showing that they are facet-defining for the corresponding mixed-integer hull. In this paper we experimentally investigate the dimensions of faces induced by general-purpose cutting planes generated by a state-of-the-art solver. Therefore, we relate … Read more

Mixed-Integer Reformulations of Resource-Constrained Two-Stage Assignment Problems

The running time for solving a mixed-integer linear optimization problem (MIP) strongly depends on the number of its integral variables. Bader et al. [Math. Progr. 169 (2018) 565–584] equivalently reformulate an integer program into an MIP that contains a reduced number of integrality constraints, when compared to the original model. Generalizing the concept of totally … Read more

On the Complexity of Inverse Mixed Integer Linear Optimization

Inverse optimization is the problem of determining the values of missing input parameters that are closest to given estimates and that will make a given solution optimal. This study is concerned with the relationship of a particular inverse mixed integer linear optimization problem (MILPs) to both the original problem and the separation problem associated with … Read more

Valid Inequalities for Mixed Integer Bilevel Linear Optimization Problems

Despite the success of branch-and-cut methods for solving mixed integer bilevel linear optimization problems (MIBLPs) in practice, there have remained some gaps in the theory surrounding these methods. In this paper, we take a first step towards laying out a theory of valid inequalities and cutting-plane methods for MIBLPs that parallels the existing theory for … Read more

Stochastic Inventory Routing with Time-based Shipment Consolidation

Inspired by the retail industry, we introduce a fundamentally new approach towards stochastic inventory routing by replenishing retailers from a central warehouse using a time-based shipment consolidation policy. Such a time-based dispatching policy, where retailers facing stochastic demand are repetitively replenished at fixed times, is essential in practice. It allows for easy incorporation with dependent … Read more

Discrete Multi-Module Capacitated Lot-Sizing Problems with Multiple Items

We study single-item discrete multi-module capacitated lot-sizing problems where the amount produced in each time period is equal to the summation of binary multiples of the capacities of n available different modules (or machines). For fixed n≥2, we develop fixed-parameter tractable (polynomial) exact algorithms that generalize the algorithms of van Vyve (2007) for n=1. We … Read more

Compact Integer Linear Programming Formulations for the Temporal Bin Packing Problem with Fire-Ups

In this article we examine a specific version of the temporal bin packing problem (TBPP) that occurs in job-to-server scheduling. The TBPP represents a generalization of the well-known bin packing problem (BPP) with respect to an additional time dimension, and it requires to find the minimum number of bins (servers) to accommodate a given list … Read more

New exact approaches for the combined cell layout problem and extensions of the multi-bay facility layout problem

In this paper we consider the Combined Cell Layout Problem (CCLP), the Multi-Bay Facility Layout Problem (MBFLP) and several generalizations of the MBFLP, which have wide applications, e.g., in factory planning, heavy manufacturing, semiconductor fabrication and arranging rooms in hospitals. Given a set of cells of type single-row or directed-circular and a set of one-dimensional … Read more

Why there is no need to use a big-M in linear bilevel optimization: A computational study of two ready-to-use approaches

Linear bilevel optimization problems have gained increasing attention both in theory as well as in practical applications of Operations Research (OR) during the last years and decades. The latter is mainly due to the ability of this class of problems to model hierarchical decision processes. However, this ability makes bilevel problems also very hard to … Read more