Global optimization of rational functions: a semidefinite programming approach

We consider the problem of global minimization of rational functions on $\LR^n$ (unconstrained case), and on an open, connected, semi-algebraic subset of $\LR^n$, or the (partial) closure of such a set (constrained case). We show that in the univariate case ($n=1$), these problems have exact reformulations as semidefinite programming (SDP) problems, by using reformulations introduced … Read more

The mathematics of eigenvalue optimization

Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary optimization theory. This essay presents a personal choice of some central mathematical ideas, outlined for … Read more

The Lax conjecture is true

In 1958 Lax conjectured that hyperbolic polynomials in three variables are determinants of linear combinations of three symmetric matrices. This conjecture is equivalent to a recent observation of Helton and Vinnikov. CitationDepartment of Mathematics, Simon Fraser University, CanadaArticleDownload View PDF

Asymptotic Behavior of Continuous Trajectories for Primal-Dual Potential-Reduction Methods

This article considers continuous trajectories of the vector fields induced by primal-dual potential-reduction algorithms for solving linear programming problems. It is known that these trajectories converge to the analytic center of the primal-dual optimal face. We establish that this convergence may be tangential to the central path, tangential to the optimal face, or in between, … Read more

Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank

We consider primal-dual algorithms for certain types of infinite-dimensional optimization problems. Our approach is based on the generalization of the technique of finite-dimensional Euclidean Jordan algebras to the case of infinite-dimensional JB-algebras of finite rank. This generalization enables us to develop polynomial-time primal-dual algorithms for “infinite-dimensional second-order cone programs.” We consider as an example a … Read more

Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior Point Methods

Solving systems of linear equations with “normal” matrices of the form $A D^2 A^T$ is a key ingredient in the computation of search directions for interior-point algorithms. In this article, we establish that a well-known basis preconditioner for such systems of linear equations produces scaled matrices with uniformly bounded condition numbers as $D$ varies over … Read more

A primal-dual second order cone approximations algorithm for symmetric cone programming

This paper presents the new concept of second-order cone approximations for convex conic programming. Given any open convex cone $K$, a logarithmically homogeneous self-concordant barrier for $K$ and any positive real number $r \le 1$, we associate, with each direction $x \in K$, a second-order cone $\hat K_r(x)$ containing $K$. We show that $K$ is … Read more

Solving Method for a Class of Bilevel Linear Programming based on Genetic Algorithms

The paper studies and designs an genetic algorithm (GA) of the bilevel linear programming problem (BLPP) by constructing the fitness function of the upper-level programming problem based on the definition of the feasible degree. This GA avoids the use of penalty function to deal with the constraints, by changing the randomly generated initial population into … Read more

On an Extension of Condition Number Theory to Non-Conic Convex Optimization

The purpose of this paper is to extend, as much as possible, the modern theory of condition numbers for conic convex optimization: z_* := min_x {c’x | Ax-b \in C_Y, x \in C_X }, to the more general non-conic format: (GP_d): z_* := min_x {c’x | Ax-b \in C_Y, x \in P}, where P is … Read more