Moment methods in energy minimization: New bounds for Riesz minimal energy problems

We use moment methods to construct a converging hierarchy of optimization problems to lower bound the ground state energy of interacting particle systems. We approximate the infinite dimensional optimization problems in this hierarchy by block diagonal semidefinite programs. For this we develop the necessary harmonic analysis for spaces consisting of subsets of another space, and … Read more

Optimized choice of parameters in interior-point methods for linear programming

In this work, we propose a predictor-corrector interior point method for linear programming in a primal-dual context, where the next iterate is chosen by the minimization of a polynomial merit function of three variables: the first is the steplength, the second defines the central path and the third models the weight of a corrector direction. … Read more

Can linear superiorization be useful for linear optimization problems?

Linear superiorization considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are (i) Does linear superiorization provide a feasible point whose linear … Read more

Linear superiorization for infeasible linear programming

Linear superiorization (abbreviated: LinSup) considers linear programming (LP) problems wherein the constraints as well as the objective function are linear. It allows to steer the iterates of a feasibility-seeking iterative process toward feasible points that have lower (not necessarily minimal) values of the objective function than points that would have been reached by the same … Read more

Ambiguous Chance-Constrained Binary Programs under Mean-Covariance Information

We consider chance-constrained binary programs, where each row of the inequalities that involve uncertainty needs to be satis ed probabilistically. Only the information of the mean and covariance matrix is available, and we solve distributionally robust chance-constrained binary programs (DCBP). Using two different ambiguity sets, we equivalently reformulate the DCBPs as 0-1 second-order cone (SOC) programs. … Read more

Positive and Z-operators on closed convex cones

Let K be a closed convex cone with dual K-star in a finite-dimensional real Hilbert space V. A positive operator on K is a linear operator L on V such that L(K) is a subset of K. Positive operators generalize the nonnegative matrices and are essential to the Perron-Frobenius theory. We say that L is … Read more

Max-Norm Optimization for Robust Matrix Recovery

This paper studies the matrix completion problem under arbitrary sampling schemes. We propose a new estimator incorporating both max-norm and nuclear-norm regularization, based on which we can conduct efficient low-rank matrix recovery using a random subset of entries observed with additive noise under general non-uniform and unknown sampling distributions. This method significantly relaxes the uniform … Read more

A Copositive Approach for Two-Stage Adjustable Robust Optimization with Uncertain Right-Hand Sides

We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which … Read more

Quadratic Two-Stage Stochastic Optimization with Coherent Measures of Risk

A new scheme to cope with two-stage stochastic optimization problems uses a risk measure as the objective function of the recourse action, where the risk measure is defined as the worst-case expected values over a set of constrained distributions. This paper develops an approach to deal with the case where both the first and second … Read more

On the identification of optimal partition for semidefinite optimization

The concept of the optimal partition was originally introduced for linear optimization and linear complementarity problems and subsequently extended to semidefinite optimization. For linear optimization and sufficient linear complementarity problems, from a central solution sufficiently close to the optimal set, the optimal partition and a maximally complementary optimal solution can be identified in strongly polynomial … Read more