A regularized simplex method

In case of a special problem class, the simplex method can be implemented as a cutting-plane method that approximates a certain convex polyhedral objective function. In this paper we consider a regularized version of this cutting-plane method, and interpret the resulting procedure as a regularized simplex method. (Regularization is performed in the dual space and … Read more

Addressing rank degeneracy in constraint-reduced interior-point methods for linear optimization

In earlier work (Tits et al., SIAM J. Optim., 17(1):119–146, 2006; Winternitz et al., COAP, doi=10.1007/s10589-010-9389-4, 2011), the present authors and their collaborators proposed primal-dual interior-point (PDIP) algorithms for linear optimization that, at each iteration, use only a subset of the (dual) inequality constraints in constructing the search direction. For problems with many more constraints … Read more

An upper bound for the number of different solutions generated by the primal simplex method with any selection rule of entering variables

Kitahara and Mizuno (2011a) obtained an upper bound for the number of different solutions generated by the primal simplex method with Dantzig’s (the most negative) pivoting rule. In this paper, we obtain an upper bound with any pivoting rule which chooses an entering variable whose reduced cost is negative at each iteration. The bound is … Read more

Warmstarting the Homogeneous and Self-Dual Interior Point Method for Linear and Conic Quadratic Problems

We present two strategies for warmstarting primal-dual interior point methods for the homogeneous self-dual model when applied to mixed linear and quadratic conic optimization problems. Common to both strategies is their use of only the final (optimal) iterate of the initial problem and their negligible computational cost. This is a major advantage when comparing to … Read more

Interior Point Methods for Optimal Experimental Designs

In this paper, we propose a primal IP method for solving the optimal experimental design problem with a large class of smooth convex optimality criteria, including A-, D- and p th mean criterion, and establish its global convergence. We also show that the Newton direction can be computed efficiently when the size of the moment … Read more

Algebraic Relaxations and Hardness Results in Polynomial Optimization and Lyapunov Analysis

The contributions of the first half of this thesis are on the computational and algebraic aspects of convexity in polynomial optimization. We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves … Read more

Symmetry in RLT cuts for the quadratic assignment and standard quadratic optimization problems

The reformulation-linearization technique (RLT), introduced in [W.P. Adams, H.D. Sherali, A tight linearization and an algorithm for zero-one quadratic programming problems, Management Science, 32(10):1274–1290, 1986], provides a way to compute linear programming bounds on the optimal values of NP-hard combinatorial optimization problems. In this paper we show that, in the presence of suitable algebraic symmetry … Read more

Existence and stability results based on asymptotic analysis for semidefinite linear complementarity problems

This work is devoted to the study of existence and stability results of semidefinite linear complementarity problems (SDLCP). Our approach consists of approximating the variational inequality formulation of the SDLCP by a sequence of suitable chosen variational inequalities. This provides particular estimates for the asymptotic cone of the solution set of the SDLCP. We thus … Read more

Linear complementarity problems over symmetric cones: Characterization of Qb-transformations and existence results

This paper is devoted to the study of the {symmetric cone linear complementarity problem} (SCLCP). In this context, our aim is to characterize the class Q_b in terms of larger classes, such as Q and R_0. For this, we introduce the class F and García’s transformations. We studied them for concrete particular instances (such as … Read more

The Gram dimension of a graph

The Gram dimension $\gd(G)$ of a graph is the smallest integer $k \ge 1$ such that, for every assignment of unit vectors to the nodes of the graph, there exists another assignment of unit vectors lying in $\oR^k$, having the same inner products on the edges of the graph. The class of graphs satisfying $\gd(G) … Read more