Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality

Sparse principal component analysis (PCA) is a popular dimensionality reduction technique for obtaining principal components which are linear combinations of a small subset of the original features. Existing approaches cannot supply certifiably optimal principal components with more than $p=100s$ of variables. By reformulating sparse PCA as a convex mixed-integer semidefinite optimization problem, we design a … Read more

Parametric analysis of conic linear optimization

This paper focuses on the parametric analysis of a conic linear optimization problem with respect to the perturbation of the objective function along many fixed directions. We introduce the concept of the primal and dual conic linear inequality representable sets, which is very helpful for converting the correlation of the parametric conic linear optimization problems … Read more

Disk matrices and the proximal mapping for the numerical radius

Optimal matrices for problems involving the matrix numerical radius often have fields of values that are disks, a phenomenon associated with partial smoothness. Such matrices are highly structured: we experiment in particular with the proximal mapping for the radius, which often maps n-by-n random matrix inputs into a particular manifold of disk matrices that has … Read more

2×2-convexifications for convex quadratic optimization with indicator variables

In this paper, we study the convex quadratic optimization problem with indicator variables. For the bivariate case, we describe the convex hull of the epigraph in the original space of variables, and also give a conic quadratic extended formulation. Then, using the convex hull description for the bivariate case as a building block, we derive … Read more

Shape-Constrained Regression using Sum of Squares Polynomials

We consider the problem of fitting a polynomial function to a set of data points, each data point consisting of a feature vector and a response variable. In contrast to standard polynomial regression, we require that the polynomial regressor satisfy shape constraints, such as monotonicity, Lipschitz-continuity, or convexity. We show how to use semidefinite programming … Read more

Bregman primal–dual first-order method and application to sparse semidefinite programming

We present a new variant of the Chambolle–Pock primal–dual method with Bregman distances, analyze its convergence, and apply it to the centering problem in sparse semidefinite programming. The novelty in the method is a line search procedure for selecting suitable step sizes. The line search obviates the need for estimating the norm of the constraint … Read more

Near-optimal analysis of univariate moment bounds for polynomial optimization

We consider a recent hierarchy of upper approximations proposed by Lasserre (arXiv:1907.097784, 2019) for the minimization of a polynomial f over a compact set K⊆ℝn. This hierarchy relies on using the push-forward measure of the Lebesgue measure on K by the polynomial f and involves univariate sums of squares of polynomials with growing degrees 2r. … Read more

Computational study of a branching algorithm for the maximum k-cut problem

This work considers the graph partitioning problem known as maximum k-cut. It focuses on investigating features of a branch-and-bound method to efficiently obtain global solutions. An exhaustive experimental study is carried out for two main components of a branch-and-bound algorithm: computing bounds and branching strategies. In particular, we propose the use of a variable neighborhood … Read more

Sparse PSD approximation of the PSD cone

While semidefinite programming (SDP) problems are polynomially solvable in theory, it is often difficult to solve large SDP instances in practice. One technique to address this issue is to relax the global positive-semidefiniteness (PSD) constraint and only enforce PSD-ness on smaller k times k principal submatrices — we call this the sparse SDP relaxation. Surprisingly, … Read more