The maximum hBccolorable subgraph problem and related problems

The maximum $k$-colorable subgraph (M$k$CS) problem is to find an induced $k$-colorable subgraph with maximum cardinality in a given graph. This paper is an in-depth analysis of the M$k$CS problem that considers various semidefinite programming relaxations including their theoretical and numerical comparisons. To simplify these relaxations we exploit the symmetry arising from permuting the colors, … Read more

Exact semidefinite programming bounds for packing problems

In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use these sharp bounds to prove that certain optimal packing configurations are … Read more

Facial Reduction for Symmetry Reduced Semidefinite Programs

We consider both facial and symmetry reduction techniques for semidefinite programming, SDP. We show that the two together fit surprisingly well in an alternating direction method of multipliers, ADMM, approach. The combination of facial and symmetry reduction leads to a significant improvement in both numerical stability and running time for both the ADMM and interior … Read more

Polynomial time guarantees for the Burer-Monteiro method

The Burer-Monteiro method is one of the most widely used techniques for solving large-scale semidefinite programs (SDP). The basic idea is to solve a nonconvex program in $Y$, where $Y$ is an $n \times p$ matrix such that $X = Y Y^T$. In this paper, we show that this method can solve SDPs in polynomial … Read more

On the tightness of SDP relaxations of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show … Read more

Exploiting Aggregate Sparsity in Second Order Cone Relaxations for Quadratic Constrained Quadratic Programming Problems

Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. (2001) and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP … Read more

Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization

A fundamental problem arising in many areas of machine learning is the evaluation of the likelihood of a given observation under different nominal distributions. Frequently, these nominal distributions are themselves estimated from data, which makes them susceptible to estimation errors. We thus propose to replace each nominal distribution with an ambiguity set containing all distributions … Read more

On Polyhedral and Second-Order-Cone Decompositions of Semidefinite Optimization Problems

We study a cutting-plane method for semidefinite optimization problems (SDOs), and supply a proof of the method’s convergence, under a boundedness assumption. By relating the method’s rate of convergence to an initial outer approximation’s diameter, we argue that the method performs well when initialized with a second-order-cone approximation, instead of a linear approximation. We invoke … Read more

On Sum of Squares Representation of Convex Forms and Generalized Cauchy-Schwarz Inequalities

A convex form of degree larger than one is always nonnegative since it vanishes together with its gradient at the origin. In 2007, Parrilo asked if convex forms are always sums of squares. A few years later, Blekherman answered the question in the negative by showing through volume arguments that for high enough number of … Read more

A relaxed interior point method for low-rank semidefinite programming problems with applications to matrix completion

A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) … Read more