Eigenvalue, Quadratic Programming, and Semidefinite Programming Relaxations for a Cut Minimization Problem

We consider the problem of partitioning the node set of a graph into $k$ sets of given sizes in order to \emph{minimize the cut} obtained using (removing) the $k$-th set. If the resulting cut has value $0$, then we have obtained a vertex separator. This problem is closely related to the graph partitioning problem. In … Read more

Lagrangian-Conic Relaxations, Part II: Applications to Polynomial Optimization Problems

We present the moment cone (MC) relaxation and a hierarchy of sparse Lagrangian-SDP relaxations of polynomial optimization problems (POPs) using the unified framework established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial subject to a nonconvex cone constraint and polynomial equality constraints. It is an extension of the … Read more

VERTICES OF SPECTRAHEDRA ARISING FROM THE ELLIPTOPE, THE THETA BODY, AND THEIR RELATIVES

Utilizing dual descriptions of the normal cone of convex optimization problems in conic form, we characterize the vertices of semidefinite representations arising from Lovász theta body, generalizations of the elliptope, and related convex sets. Our results generalize vertex characterizations due to Laurent and Poljak from the 1990’s. Our approach also leads us to nice characterizations … Read more

A Hierarchy of Subgraph Projection-Based Semidefinite Relaxations for some NP-Hard Graph Optimization Problems

Many important NP-hard combinatorial problems can be efficiently approximated using semidefinite programming relaxations. We propose a new hierarchy of semidefinite relaxations for classes of such problems that based on graphs and for which the projection of the problem onto a subgraph shares the same structure as the original problem. This includes the well-studied max-cut and … Read more

A structural geometrical analysis of weakly infeasible SDPs

In this article, we present a geometric theoretical analysis of semidefinite feasibility problems (SDFPs). We introduce the concept of hyper feasible partitions and sub-hyper feasible directions, and show how they can be used to decompose SDFPs into smaller ones, in a way that preserves most feasibility properties of the original problem. With this technique, we … Read more

A semidefinite programming hierarchy for packing problems in discrete geometry

Packing problems in discrete geometry can be modeled as finding independent sets in infinite graphs where one is interested in independent sets which are as large as possible. For finite graphs one popular way to compute upper bounds for the maximal size of an independent set is to use Lasserre’s semidefinite programming hierarchy. We generalize … Read more

A Two-Variable Approach to the Two-Trust-Region Subproblem

The trust-region subproblem minimizes a general quadratic function over an ellipsoid and can be solved in polynomial time using a semidefinite-programming (SDP) relaxation. Intersecting the feasible set with a second ellipsoid results in the two-trust-region subproblem (TTRS). Even though TTRS can also be solved in polynomial-time, existing algorithms do not use SDP. In this paper, … Read more

A First-Order Algorithm for the A-Optimal Experimental Design Problem: A Mathematical Programming Approach

We develop and analyse a first-order algorithm for the A-optimal experimental design problem. The problem is first presented as a special case of a parametric family of optimal design problems for which duality results and optimality conditions are given. Then, two first-order (Frank-Wolfe type) algorithms are presented, accompanied by a detailed time-complexity analysis of the … Read more

Fast implementation for semidefinite programs with positive matrix completion

Solving semidefinite programs (SDP) in a short time is the key to managing various mathematical optimization problems in practical time. The matrix-completion primal-dual interior-point method (MC-PDIPM) extracts a structural sparsity of input SDP by factorizing the variable matrices, and it shrinks the computation time. In this paper, we propose a new factorization based on the … Read more

Semidefinite Programming Based Preconditioning for More Robust Near-Separable Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) under the separability assumption can provably be solved efficiently, even in the presence of noise, and has been shown to be a powerful technique in document classification and hyperspectral unmixing. This problem is referred to as near-separable NMF and requires that there exists a cone spanned by a small subset of … Read more