Parallelizable Algorithms for Optimization Problems with Orthogonality Constraints

To construct a parallel approach for solving optimization problems with orthogonality constraints is usually regarded as an extremely difficult mission, due to the low scalability of the orthonormalization procedure. However, such demand is particularly huge in some application areas such as materials computation. In this paper, we propose a proximal linearized augmented Lagrangian algorithm (PLAM) … Read more

An inertial extrapolation method for convex simple bilevel optimization

We consider a scalar objective minimization problem over the solution set of another optimization problem. This problem is known as simple bilevel optimization problem and has drawn a significant attention in the last few years. Our inner problem consists of minimizing the sum of smooth and nonsmooth functions while the outer one is the minimization … Read more

On the complexity of an Inexact Restoration method for constrained optimization

Recent papers indicate that some algorithms for constrained optimization may exhibit worst-case complexity bounds that are very similar to those of unconstrained optimization algorithms. A natural question is whether well established practical algorithms, perhaps with small variations, may enjoy analogous complexity results. In the present paper we show that the answer is positive with respect … Read more

An Inexact First-order Method for Constrained Nonlinear Optimization

The primary focus of this paper is on designing inexact first-order methods for solving large-scale constrained nonlinear optimization problems. By controlling the inexactness of the subproblem solution, we can significantly reduce the computational cost needed for each iteration. A penalty parameter updating strategy during the subproblem solve enables the algorithm to automatically detect infeasibility. Global … Read more

Universal Barrier is n-Self-Concordant

This paper shows that the self-concordance parameter of the universal barrier on any n-dimensional proper convex domain is upper bounded by n. This bound is tight and improves the previous O(n) bound by Nesterov and Nemirovski. The key to our main result is a pair of new, sharp moment inequalities for s-concave distributions, which could … Read more

Bilevel optimization: theory, algorithms and applications

Bilevel optimization problems are hierarchical optimization problems where the feasible region of the so-called upper level problem is restricted by the graph of the solution set mapping of the lower level problem. Aim of this article is to collect a large number of references on this topic, to show the diversity of contributions and to … Read more

Asynchronous Sequential Inertial Iterations for Common Fixed Points Problems with an Application to Linear Systems

The common fixed points problem requires finding a point in the intersection of fixed points sets of a finite collection of operators. Quickly solving problems of this sort is of great practical importance for engineering and scientific tasks (e.g., for computed tomography). Iterative methods for solving these problems often employ a Krasnosel’skii-Mann type iteration. We … Read more

First-order methods for the impatient: support identification in finite time with convergent Frank-Wolfe variants

In this paper, we focus on the problem of minimizing a non-convex function over the unit simplex. We analyze two well-known and widely used variants of the Frank-Wolfe algorithm and first prove global convergence of the iterates to stationary points both when using exact and Armijo line search. Then we show that the algorithms identify … Read more

The Standard Pessimistic Bilevel Problem

Pessimistic bilevel optimization problems, as optimistic ones, possess a structure involving three interrelated optimization problems. Moreover, their finite infima are only attained under strong conditions. We address these difficulties within a framework of moderate assumptions and a perturbation approach which allow us to approximate such finite infima arbitrarily well by minimal values of a sequence … Read more

On the Relation between MPECs and Optimization Problems in Abs-Normal Form

We show that the problem of unconstrained minimization of a function in abs-normal form is equivalent to identifying a certain stationary point of a counterpart Mathematical Program with Equilibrium Constraints (MPEC). Hence, concepts introduced for the abs-normal forms turn out to be closely related to established concepts in the theory of MPECs. We give a … Read more