On the Convergence to Stationary Points of Deterministic and Randomized Feasible Descent Directions Methods

We study the class of nonsmooth nonconvex problems in which the objective is to minimize the difference between a continuously differentiable function (possibly nonconvex) and a convex (possibly nonsmooth) function over a convex polytope. This general class contains many types of problems, including difference of convex functions (DC) problems, and as such, can be used … Read more

Non-monotone Inexact Restoration Method for nonlinear programming

This paper deals with a new variant of the Inexact Restoration Method of Fischer and Friedlander (COAP, 46, pp. 333-346, 2010). We propose an algorithm that replaces the monotone line-search performed in the tangent phase (with regard to the penalty function) by a non-monotone one. Con- vergence to feasible points satisfying the approximate gradient projection … Read more

Decision Diagram Decomposition for Quadratically Constrained Binary Optimization

In recent years the use of decision diagrams within the context of discrete optimization has proliferated. This paper continues this expansion by proposing the use of decision diagrams for modeling and solving binary optimization problems with quadratic constraints. The model proposes the use of multiple decision diagrams to decompose a quadratic matrix so that each … Read more

Parallelizable Algorithms for Optimization Problems with Orthogonality Constraints

To construct a parallel approach for solving optimization problems with orthogonality constraints is usually regarded as an extremely difficult mission, due to the low scalability of the orthonormalization procedure. However, such demand is particularly huge in some application areas such as materials computation. In this paper, we propose a proximal linearized augmented Lagrangian algorithm (PLAM) … Read more

An inertial extrapolation method for convex simple bilevel optimization

We consider a scalar objective minimization problem over the solution set of another optimization problem. This problem is known as simple bilevel optimization problem and has drawn a significant attention in the last few years. Our inner problem consists of minimizing the sum of smooth and nonsmooth functions while the outer one is the minimization … Read more

On the complexity of an Inexact Restoration method for constrained optimization

Recent papers indicate that some algorithms for constrained optimization may exhibit worst-case complexity bounds that are very similar to those of unconstrained optimization algorithms. A natural question is whether well established practical algorithms, perhaps with small variations, may enjoy analogous complexity results. In the present paper we show that the answer is positive with respect … Read more

An Inexact First-order Method for Constrained Nonlinear Optimization

The primary focus of this paper is on designing inexact first-order methods for solving large-scale constrained nonlinear optimization problems. By controlling the inexactness of the subproblem solution, we can significantly reduce the computational cost needed for each iteration. A penalty parameter updating strategy during the subproblem solve enables the algorithm to automatically detect infeasibility. Global … Read more

Universal Barrier is n-Self-Concordant

This paper shows that the self-concordance parameter of the universal barrier on any n-dimensional proper convex domain is upper bounded by n. This bound is tight and improves the previous O(n) bound by Nesterov and Nemirovski. The key to our main result is a pair of new, sharp moment inequalities for s-concave distributions, which could … Read more

Bilevel optimization: theory, algorithms and applications

Bilevel optimization problems are hierarchical optimization problems where the feasible region of the so-called upper level problem is restricted by the graph of the solution set mapping of the lower level problem. Aim of this article is to collect a large number of references on this topic, to show the diversity of contributions and to … Read more

Asynchronous Sequential Inertial Iterations for Common Fixed Points Problems with an Application to Linear Systems

The common fixed points problem requires finding a point in the intersection of fixed points sets of a finite collection of operators. Quickly solving problems of this sort is of great practical importance for engineering and scientific tasks (e.g., for computed tomography). Iterative methods for solving these problems often employ a Krasnosel’skii-Mann type iteration. We … Read more