A fresh CP look at mixed-binary QPs: New formulations and relaxations

Triggered by Burer’s seminal characterization from 2009, many copositive (CP) reformulations of mixed-binary QPs have been discussed by now. Most of them can be used as proper relaxations, if the intractable co(mpletely )positive cones are replaced by tractable approximations. While the widely used approximation hierarchies have the disadvantage to use positive-semidefinite (psd) matrices of orders … Read more

Solving PhaseLift by low-rank Riemannian optimization methods for complex semidefinite constraints

A framework, PhaseLift, was recently proposed to solve the phase retrieval problem. In this framework, the problem is solved by optimizing a cost function over the set of complex Hermitian positive semidefinite matrices. This approach to phase retrieval motivates a more general consideration of optimizing cost functions on semidefinite Hermitian matrices where the desired minimizers … Read more

Mathematical Programs with Equilibrium Constraints: A sequential optimality condition, new constraint qualifications and algorithmic consequences.

Mathematical programs with equilibrium (or complementarity) constraints, MPECs for short, are a difficult class of constrained optimization problems. The feasible set has a very special structure and violates most of the standard constraint qualifications (CQs). Thus, the Karush-Kuhn-Tucker (KKT) conditions are not necessarily satisfied by minimizers and the convergence assumptions of many methods for solving … Read more

A predictor-corrector path-following algorithm for dual-degenerate parametric optimization problems

Most path-following algorithms for tracing a solution path of a parametric nonlinear optimization problem are only certifiably convergent under strong regularity assumptions about the problem functions, in particular, the linear independence of the constraint gradients at the solutions, which implies a unique multiplier solution for every nonlinear program. In this paper we propose and prove … Read more

A new algebraic analysis to linear mixed models

This article presents a new investigation to the linear mixed model $\by = \bX \bbe + \bZ\bga + \bve$ with fixed effect $\bX\bbe$ and random effect $\bZ\bga$ under a general assumption via some novel algebraic tools in matrix theory, and reveals a variety of deep and profound properties hidden behind the linear mixed model. We … Read more

A Second-Order Cone Based Approach for Solving the Trust Region Subproblem and Its Variants

We study the trust region subproblem (TRS) of minimizing a nonconvex quadratic function over the unit ball with additional conic constraints. Despite having a nonconvex objective, it is known that the TRS and a number of its variants are polynomial-time solvable. In this paper, we follow a second-order cone based approach to derive an exact … Read more

Iteration-complexity of a Rockafellar’s proximal method of multipliers for convex programming based on second-order approximations

This paper studies the iteration-complexity of a new primal-dual algorithm based on Rockafellar’s proximal method of multipliers (PMM) for solving smooth convex programming problems with inequality constraints. In each step, either a step of Rockafellar’s PMM for a second-order model of the problem is computed or a relaxed extragradient step is performed. The resulting algorithm … Read more

Numerical Solution of Linear-Quadratic Optimal Control Problems for Switching System

In this paper we obtained an approach to the optimal switching control problem with unknown switching points which it is described in reference [1, 2]. In reference [1], the authors studied the Decomposition of Linear-Quadratic Optimal Control Problems for Two-Steps Systems. In [1], the authors assumed the switching point t1 is xed in the interval … Read more

A Riemannian rank-adaptive method for low-rank optimization

This paper presents an algorithm that solves optimization problems on a matrix manifold $\mathcal{M} \subseteq \mathbb{R}^{m \times n}$ with an additional rank inequality constraint. The algorithm resorts to well-known Riemannian optimization schemes on fixed-rank manifolds, combined with new mechanisms to increase or decrease the rank. The convergence of the algorithm is analyzed and a weighted … Read more

A multiplier method with a class of penalty functions for convex programming

We consider a class of augmented Lagrangian methods for solving convex programming problems with inequality constraints. This class involves a family of penalty functions and specific values of parameters $p,q,\tilde y \in R$ and $c>0$. The penalty family includes the classical modified barrier and the exponential function. The associated proximal method for solving the dual … Read more