Low-complexity method for hybrid MPC with local guarantees

Model predictive control problems for constrained hybrid systems are usually cast as mixed-integer optimization problems (MIP). However, commercial MIP solvers are designed to run on desktop computing platforms and are not suited for embedded applications which are typically restricted by limited computational power and memory. To alleviate these restrictions, we develop a novel low-complexity, iterative … Read more

A Study of the Difference-of-Convex Approach for Solving Linear Programs with Complementarity Constraints

This paper studies the difference-of-convex (DC) penalty formulations and the associated difference-of-convex algorithm (DCA) for computing stationary solutions of linear programs with complementarity constraints (LPCCs). We focus on three such formulations and establish connections between their stationary solutions and those of the LPCC. Improvements of the DCA are proposed to remedy some drawbacks in a … Read more

A Sequential Algorithm for Solving Nonlinear Optimization Problems with Chance Constraints

An algorithm is presented for solving nonlinear optimization problems with chance constraints, i.e., those in which a constraint involving an uncertain parameter must be satisfied with at least a minimum probability. In particular, the algorithm is designed to solve cardinality-constrained nonlinear optimization problems that arise in sample average approximations of chance-constrained problems, as well as … Read more

Second-order optimality and beyond: characterization and evaluation complexity in convexly-constrained nonlinear optimization

High-order optimality conditions for convexly-constrained nonlinear optimization problems are analyzed. A corresponding (expensive) measure of criticality for arbitrary order is proposed and extended to define high-order $\epsilon$-approximate critical points. This new measure is then used within a conceptual trust-region algorithm to show that, if derivatives of the objective function up to order $q \geq 1$ … Read more

Online First-Order Framework for Robust Convex Optimization

Robust optimization (RO) has emerged as one of the leading paradigms to efficiently model parameter uncertainty. The recent connections between RO and problems in statistics and machine learning domains demand for solving RO problems in ever more larger scale. However, the traditional approaches for solving RO formulations based on building and solving robust counterparts or … Read more

A derivative-free trust-region augmented Lagrangian algorithm

We present a new derivative-free trust-region (DFTR) algorithm to solve general nonlinear constrained problems with the use of an augmented Lagrangian method. No derivatives are used, neither for the objective function nor for the constraints. An augmented Lagrangian method, known as an effective tool to solve equality and inequality constrained optimization problems with derivatives, is … Read more

Solving Highly Detailed Gas Transport MINLPs: Block Separability and Penalty Alternating Direction Methods

Detailed modeling of gas transport problems leads to nonlinear and nonconvex mixed-integer optimization or feasibility models (MINLPs) because both the incorporation of discrete controls of the network as well as accurate physical and technical modeling is required in order to achieve practical solutions. Hence, ignoring certain parts of the physics model is not valid for … Read more

A progressive barrier derivative-free trust-region algorithm for constrained optimization

We study derivative-free constrained optimization problems and propose a trust-region method that builds linear or quadratic models around the best feasible and and around the best infeasible solutions found so far. These models are optimized within a trust region, and the progressive barrier methodology handles the constraints by progressively pushing the infeasible solutions toward the … Read more

On a conjecture in second-order optimality conditions

In this paper we deal with optimality conditions that can be verified by a nonlinear optimization algorithm, where only a single Lagrange multiplier is avaliable. In particular, we deal with a conjecture formulated in [R. Andreani, J.M. Martinez, M.L. Schuverdt, “On second-order optimality conditions for nonlinear programming”, Optimization, 56:529–542, 2007], which states that whenever a … Read more

New error measures and methods for realizing protein graphs from distance data

The interval Distance Geometry Problem (iDGP) consists in finding a realization in R^K of a simple undirected graph G=(V,E) with nonnegative intervals assigned to the edges in such a way that, for each edge, the Euclidean distance between the realization of the adjacent vertices is within the edge interval bounds. Our aim is to determine … Read more