Convergence Analysis of the DIRECT Algorithm

The DIRECT algorithm is a deterministic sampling method for bound constrained Lipschitz continuous optimization. We prove a subsequential convergence result for the DIRECT algorithm that quantifies some of the convergence observations in the literature. Our results apply to several variations on the original method, including one that will handle general constraints. We use techniques from … Read more

ON USING THE ELASTIC MODE IN NONLINEAR PROGRAMMING APPROACHES TO MATHEMATICALPROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

We investigate the possibility of solving mathematical programs with complementarity constraints (MPCCs) using algorithms and procedures of smooth nonlinear programming. Although MPCCs do not satisfy a constraint qualification, we establish sucient conditions for their Lagrange multiplier set to be nonempty. MPCCs that have nonempty Lagrange multiplier sets and that satisfy the quadratic growth condition can … Read more

GLOBAL CONVERGENCE OF AN ELASTIC MODE APPROACH FOR A CLASS OF MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

We prove that any accumulation point of an elastic mode approach, applied to the optimization of a mixed P variational inequality, that approximately solves the relaxed subproblems is a C-stationary point of the problem of optimizing a parametric mixed P variational inequality. If, in addition, the accumulation point satis es the MPCC-LICQ constraint quali cation and if … Read more

Convergence analysis of a primal-dual interior-point method for nonlinear programming

We analyze a primal-dual interior-point method for nonlinear programming. We prove the global convergence for a wide class of problems under the standard assumptions on the problem. Citation Technical Report ORFE-04-07, Department of ORFE, Princeton University, Princeton, NJ 08544 Article Download View Convergence analysis of a primal-dual interior-point method for nonlinear programming

A primal-dual nonlinear rescaling method with dynamic scaling parameter update

In this paper we developed a general primal-dual nonlinear rescaling method with dynamic scaling parameter update (PDNRD) for convex optimization. We proved the global convergence, established 1.5-Q-superlinear rate of convergence under the standard second order optimality conditions. The PDNRD was numerically implemented and tested on a number of nonlinear problems from COPS and CUTE sets. … Read more

Numerical experiments with an interior-exterior point method for nonlinear programming

The paper presents an algorithm for solving nonlinear programming problems. The algorithm is based on the combination of interior and exterior point methods. The latter is also known as the primal-dual nonlinear rescaling method. The paper shows that in certain cases when the interior point method fails to achieve the solution with the high level … Read more

Constrained optimization in seismic reflection tomography: an SQP augmented Lagrangian approach

Seismic reflection tomography is a method for determining a subsurface velocity model from the traveltimes of seismic waves reflecting on geological interfaces. From an optimization viewpoint, the problem consists in minimizing a nonlinear least-squares function measuring the mismatch between observed traveltimes and those calculated by ray tracing in this model. The introduction of a priori … Read more

A sequential quadratic programming algorithm with a piecewise linear merit function

A sequential quadratic programming algorithm for solving nonlinear programming problems is presented. The new feature of the algorithm is related to the definition of the merit function. Instead of using one penalty parameter per iteration and increasing it as the algorithm progresses, we suggest that a new point is to be accepted if it stays … Read more

Benchmarking Optimization Software with COPS 3.0

We describe version 3.0 of the COPS set of nonlinearly constrained optimization problems. We have added new problems, as well as streamlined and improved most of the problems. We also provide a comparison of the FILTER, KNITRO, LOQO, MINOS, and SNOPT solvers on these problems. Citation Technical Report ANL/MCS-TM-273, Argonne National Laboratory, 02/04. Article Download … Read more

On the Relationship between Bilevel Decomposition Algorithms and Direct Interior-Point Methods

Engineers have been using \emph{bilevel decomposition algorithms} to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upper-level problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used … Read more