Low Order-Value Optimization and Applications

Given r real functions F1 (x), . . . , Fr (x) and an integer p between 1 and r, the Low Order- Value Optimization problem (LOVO) consists of minimizing the sum of the functions that take the p smaller values. If (y1 , . . . , yr ) is a vector of data … Read more

On warm starts for interior methods

An appealing feature of interior methods for linear programming is that the number of iterations required to solve a problem tends to be relatively insensitive to the choice of initial point. This feature has the drawback that it is difficult to design interior methods that efficiently utilize information from an optimal solution to a “nearby” … Read more

Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming

We introduce a framework in which updating rules for the barrier parameter in primal-dual interior-point methods become dynamic. The original primal-dual system is augmented to incorporate explicitly an updating function. A Newton step for the augmented system gives a primal-dual Newton step and also a step in the barrier parameter. Based on local information and … Read more

A Near Maximum Likelihood Decoding Algorithm for MIMO Systems Based on Semi-Definite Programming

In Multi-Input Multi-Output (MIMO) systems, Maximum-Likelihood (ML) decoding is equivalent to finding the closest lattice point in an N-dimensional complex space. In general, this problem is known to be NP hard. In this paper, we propose a quasi-maximum likelihood algorithm based on Semi-Definite Programming (SDP). We introduce several SDP relaxation models for MIMO systems, with … Read more

Support Vector Machine via Sequential Subspace Optimization

We present an optimization engine for large scale pattern recognition using Support Vector Machine (SVM). Our treatment is based on conversion of soft-margin SVM constrained optimization problem to an unconstrained form, and solving it using newly developed Sequential Subspace Optimization (SESOP) method. SESOP is a general tool for large-scale smooth unconstrained optimization. At each iteration … Read more

SOS approximation of polynomials nonnegative on a real algebraic set

Let $V\subset R^n$ be a real algebraic set described by finitely many polynomials equations $g_j(x)=0,j\in J$, and let $f$ be a real polynomial, nonnegative on $V$. We show that for every $\epsilon>0$, there exist nonnegative scalars $\{\lambda_j\}_{j\in J}$ such that, for all $r$ sufficiently large, $f+\epsilon\theta_r+\sum_{j\in J} \lambda_j g_j^2$ is a sum of squares. Here, … Read more

A sum of squares approximation of nonnegative polynomials

We show that every real nonnegative polynomial $f$ can be approximated as closely as desired (in the $l_1$-norm of its coefficient vector) by a sequence of polynomials $\{f_\epsilon\}$ that are sums of squares. The novelty is that each $f_\epsilon$ has a simple and explicit form in terms of $f$ and $\epsilon$. CitationSIAM J. Optimization 16 … Read more

Nonlinear optimal control: Numerical approximations via moments and LMI-relaxations

We consider the class of nonlinear optimal control problems with all data (differential equation, state and control constraints, cost) being polynomials. We provide a simple hierarchy of LMI-relaxations whose optimal values form a nondecreasing sequence of lower bounds on the optimal value. Preliminary results show that good approximations are obtained with few moments. CitationLAAS report … Read more

A Homogeneous Model for Mixed Complementarity Problems over Symmetric Cones

In this paper, we propose a homogeneous model for solving monotone mixed complementarity problems over symmetric cones, by extending the results in \cite{YOSHISE04} for standard form of the problems. We show that the extended model inherits the following desirable features: (a) A path exists, is bounded and has a trivial starting point without any regularity … Read more

A Note on Multiobjective Optimization and Complementarity Constraints

We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding an optimal representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise … Read more