Transposition theorems and qualification-free optimality conditions

New theorems of the alternative for polynomial constraints (based on the Positivstellensatz from real algebraic geometry) and for linear constraints (generalizing the transposition theorems of Motzkin and Tucker) are proved. Based on these, two Karush-John optimality conditions — holding without any constraint qualification — are proved for single- or multi-objective constrained optimization problems. The first … Read more

Compact linearization for bilinear mixed-integer problems

We present a compact linearization for a broad class of bilinear 0-1 mixed-integer problems subject to assignment constraints. We apply the linearization to three classes of problems: quadratic assignment, multiprocessor scheduling with communication delays, and graph partitioning, and show that it yields faster solution times. CitationDEI, Politecnico di Milano, Working paper, April 2005.ArticleDownload View PDF

Solving Multi-Leader-Follower Games

Multi-leader-follower games arise when modeling competition between two or more dominant firms and lead in a natural way to equilibrium problems with equilibrium constraints (EPECs). We examine a variety of nonlinear optimization and nonlinear complementarity formulations of EPECs. We distinguish two broad cases: problems where the leaders can cost-differentiate and problems with price-consistent followers. We … Read more

Elastic-Mode Algorithms for Mathematical Programs with Equilibrium Constraints: Global Convergence and Stationarity Properties

The elastic-mode formulation of the problem of minimizing a nonlinear function subject to equilibrium constraints has appealing local properties in that, for a finite value of the penalty parameter, local solutions satisfying first- and second-order necessary optimality conditions for the original problem are also first- and second-order points of the elastic-mode formulation. Here we study … Read more

Experimental Datasets from Chemical Thermodynamics

I have been working for quite awhile with the treatment of experimental results in chemical thermodynamics. I have tried to organize my archives and make them available for others. There are several experimental datasets in computer readable format and I hope that they can be used as useful benchmarks for data fitting and nonlinear optimization. … Read more

Variable metric method for minimization of partially separable nonsmooth functions.

In this report, we propose a new partitioned variable metric method for minimization of nonsmooth partially separable functions. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Computational experiments given confirm efficiency and robustness of the new … Read more

Local Analysis of the Feasible Primal-Dual Interior-Point Method

In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the inequality constraints define a locally concave feasible region. … Read more

On Augmented Lagrangian methods with general lower-level constraints

Augmented Lagrangian methods with general lower-level constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lower-level type. Two methods of this class are introduced and analyzed. Inexact resolution of the lower-level constrained subproblems is considered. Global convergence is proved … Read more

Adaptive Barrier Strategies for Nonlinear Interior Methods

This paper considers strategies for selecting the barrier parameter at every iteration of an interior-point method for nonlinear programming. Numerical experiments suggest that adaptive choices, such as Mehrotra’s probing procedure, outperform static strategies that hold the barrier parameter fixed until a barrier optimality test is satisfied. A new adaptive strategy is proposed based on the … Read more

Toward a new DIRECT algorithm. A two-points based sampling method

The DIRECT algorithm was motivated by a modification to Lipschitzian optimization. The algorithm begins its search by sampling the objective function at the midpoint of an interval, where this function attains its lowest value, and then divides this interval by trisecting it. One of its weakness is that if a global minimum lies at the … Read more