A linesearch-based derivative-free method for noisy black-box problems

In this work we consider unconstrained optimization problems. The objective function is known through a zeroth order stochastic oracle that gives an estimate of the true objective function. To solve these problems, we propose a derivativefree algorithm based on extrapolation techniques. Under reasonable assumptions we are able to prove convergence properties for the proposed algorithms. … Read more

Faster stochastic cubic regularized Newton methods with momentum

Cubic regularized Newton (CRN) methods have attracted significant research interest because they offer stronger solution guarantees and lower iteration complexity. With the rise of the big-data era, there is growing interest in developing stochastic cubic regularized Newton (SCRN) methods that do not require exact gradient and Hessian evaluations. In this paper, we propose faster SCRN … Read more

Sub-sampled Trust-Region Methods with Deterministic Worst-Case Complexity Guarantees

In this paper, we develop and analyze sub-sampled trust-region methods for solving finite-sum optimization problems. These methods employ subsampling strategies to approximate the gradient and Hessian of the objective function, significantly reducing the overall computational cost. We propose a novel adaptive procedure for deterministically adjusting the sample size used for gradient (or gradient and Hessian) … Read more

Complexity of normalized stochastic first-order methods with momentum under heavy-tailed noise

In this paper, we propose practical normalized stochastic first-order methods with Polyak momentum, multi-extrapolated momentum, and recursive momentum for solving unconstrained optimization problems. These methods employ dynamically updated algorithmic parameters and do not require explicit knowledge of problem-dependent quantities such as the Lipschitz constant or noise bound. We establish first-order oracle complexity results for finding … Read more

Full Convergence of Regularized Methods for Unconstrained Optimization

Typically, the sequence of points generated by an optimization algorithm may have multiple limit points. Under convexity assumptions, however, (sub)gradient methods are known to generate a convergent sequence of points. In this paper, we extend the latter property to a broader class of algorithms. Specifically, we study unconstrained optimization methods that use local quadratic models … Read more

Gradient Methods with Online Scaling Part I. Theoretical Foundations

This paper establishes the theoretical foundations of the online scaled gradient methods (OSGM), a framework that utilizes online learning to adapt stepsizes and provably accelerate first-order methods. OSGM quantifies the effectiveness of a stepsize by a feedback function motivated from a convergence measure and uses the feedback to adjust the stepsize through an online learning … Read more

Solving a linear program via a single unconstrained minimization

This paper proposes a novel approach for solving linear programs. We reformulate a primal-dual linear program as an unconstrained minimization of a convex and twice continuously differentiable merit function. When the optimal set of the primal-dual pair is nonempty, its optimal set is equal to the optimal set of the proposed merit function. Minimizing this … Read more

A Fast Newton Method Under Local Lipschitz Smoothness

A new, fast second-order method is proposed that achieves the optimal \(\mathcal{O}\left(|\log(\epsilon)|\epsilon^{-3/2}\right) \) complexity to obtain first-order $\epsilon$-stationary points. Crucially, this is deduced without assuming the standard global Lipschitz Hessian continuity condition, but onlyusing an appropriate local smoothness requirement. The algorithm exploits Hessian information to compute a Newton step and a negative curvature step when … Read more

A characterization of positive spanning sets with ties to strongly edge-connected digraphs

Positive spanning sets (PSSs) are families of vectors that span a given linear space through non-negative linear combinations. Despite certain classes of PSSs being well understood, a complete characterization of PSSs remains elusive. In this paper, we explore a relatively understudied relationship between positive spanning sets and strongly edge-connected digraphs, in that the former can … Read more