On efficiency of nonmonotone Armijo-type line searches

Monotonicity and nonmonotonicity play a key role in studying the global convergence and the efficiency of iterative schemes employed in the field of nonlinear optimization, where globally convergent and computationally efficient schemes are explored. This paper addresses some features of descent schemes and the motivation behind nonmonotone strategies and investigates the efficiency of an Armijo-type … Read more

A proximal point algorithm for DC functions on Hadamard manifolds

An extension of a proximal point algorithm for difference of two convex functions is presented in the context of Riemannian manifolds of nonposite sectional curvature. If the sequence generated by our algorithm is bounded it is proved that every cluster point is a critical point of the function (not necessarily convex) under consideration, even if … Read more

An improved algorithm for L2-Lp minimization problem

In this paper we consider a class of non-Lipschitz and non-convex minimization problems which generalize the L2−Lp minimization problem. We propose an iterative algorithm that decides the next iteration based on the local convexity/concavity/sparsity of its current position. We show that our algorithm finds an epsilon-KKT point within O(log(1/epsilon)) iterations. The same result is also … Read more

A regularized limited-memory BFGS method for unconstrained minimization problems

The limited-memory BFGS (L-BFGS) algorithm is a popular method of solving large-scale unconstrained minimization problems. Since L-BFGS conducts a line search with the Wolfe condition, it may require many function evaluations for ill-posed problems. To overcome this difficulty, we propose a method that combines L-BFGS with the regularized Newton method. The computational cost for a … Read more

Robust Block Coordinate Descent

In this paper we present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Robust Coordinate Descent (RCD). At … Read more

A Quasi-Newton Algorithm for Nonconvex, Nonsmooth Optimization with Global Convergence Guarantees

A line search algorithm for minimizing nonconvex and/or nonsmooth objective functions is presented. The algorithm is a hybrid between a standard Broyden–Fletcher–Goldfarb–Shanno (BFGS) and an adaptive gradient sampling (GS) method. The BFGS strategy is employed because it typically yields fast convergence to the vicinity of a stationary point, and together with the adaptive GS strategy … Read more

A Second-Order Method for Compressed Sensing Problems with Coherent and Redundant Dictionaries

In this paper we are interested in the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. CS problems of this type are convex with non-smooth and non-separable regularization term, therefore a specialized solver is required. We propose a primal-dual Newton Conjugate Gradients (pdNCG) method. … Read more

Generalized Inexact Proximal Algorithms: Habit’s/ Routine’s Formation with Resistance to Change, following Worthwhile Changes

This paper shows how, in a quasi metric space, an inexact proximal algorithm with a generalized perturbation term appears to be a nice tool for Behavioral Sciences (Psychology, Economics, Management, Game theory,…). More precisely, the new perturbation term represents an index of resistance to change, defined as a “curved enough” function of the quasi distance … Read more

On solving symmetric systems of linear equations in an unnormalized Krylov subspace framework

In an unnormalized Krylov subspace framework for solving symmetric systems of linear equations, the orthogonal vectors that are generated by a Lanczos process are not necessarily on the form of gradients. Associating each orthogonal vector with a triple, and using only the three-term recurrences of the triples, we give conditions on whether a symmetric system … Read more

A modified limited-memory BNS method for unconstrained minimization based on the conjugate directions idea

A modification of the limited-memory variable metric BNS method for large scale unconstrained optimization is proposed, which consist in corrections (derived from the idea of conjugate directions) of the used difference vectors for better satisfaction of previous quasi-Newton conditions. In comparison with [16], where a similar approach is used, correction vectors from more previous iterations … Read more