Joint Inventory and Revenue Management with Removal Decisions

We study the problem of a retailer that maximizes profit through joint replenishment, pricing and removal decisions. This problem is motivated by the observation that retailers usually retain rights to remove inventory from their network either by returning it to the suppliers or through liquidation in the face of random demand and capacity constraints. We … Read more

Toward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional action and scalar state

We propose a Fully Polynomial-Time Approximation Scheme (FPTAS) for stochastic dynamic programs with multidimensional action, scalar state, convex costs and linear state transition function. The action spaces are polyhedral and described by parametric linear programs. This type of problems finds applications in the area of optimal planning under uncertainty, and can be thought of as … Read more

Coordination of a two-level supply chain with contracts under complete or asymmetric information

We consider the coordination of planning decisions of a single product in a supply chain composed of one supplier and one retailer by using contracts. We assume that the retailer has the market power to impose his optimal replenishment plan to the supplier. Our concern is on the minimization of the supplier’s cost. In order … Read more

Inexact cuts for Deterministic and Stochastic Dual Dynamic Programming applied to convex nonlinear optimization problems

We introduce an extension of Dual Dynamic Programming (DDP) to solve convex nonlinear dynamic programming equations. We call Inexact DDP (IDDP) this extension which applies to situations where some or all primal and dual subproblems to be solved along the iterations of the method are solved with a bounded error. We show that any accumulation … Read more

Revisiting Approximate Linear Programming Using a Saddle Point Approach

Approximate linear programs (ALPs) are well-known models for computing value function approximations (VFAs) of intractable Markov decision processes (MDPs) arising in applications. VFAs from ALPs have desirable theoretical properties, define an operating policy, and provide a lower bound on the optimal policy cost, which can be used to assess the suboptimality of heuristic policies. However, … Read more

Dual Dynamic Programming with cut selection: convergence proof and numerical experiments

We consider convex optimization problems formulated using dynamic programming equations. Such problems can be solved using the Dual Dynamic Programming algorithm combined with the Level 1 cut selection strategy or the Territory algorithm to select the most relevant Benders cuts. We propose a limited memory variant of Level 1 and show the convergence of DDP … Read more

Lower Bound On the Computational Complexity of Discounted Markov Decision Problems

We study the computational complexity of the infinite-horizon discounted-reward Markov Decision Problem (MDP) with a finite state space $\cS$ and a finite action space $\cA$. We show that any randomized algorithm needs a running time at least $\Omega(\carS^2\carA)$ to compute an $\epsilon$-optimal policy with high probability. We consider two variants of the MDP where the … Read more

Randomized Linear Programming Solves the Discounted Markov Decision Problem In Nearly-Linear (Sometimes Sublinear) Running Time

We propose a randomized linear programming algorithm for approximating the optimal policy of the discounted Markov decision problem. By leveraging the value-policy duality, the algorithm adaptively samples state transitions and makes exponentiated primal-dual updates. We show that it finds an ε-optimal policy using nearly-linear running time in the worst case. For Markov decision processes that … Read more

From Infinite to Finite Programs: Explicit Error Bounds with Applications to Approximate Dynamic Programming

We consider linear programming (LP) problems in infinite dimensional spaces that are in general computationally intractable. Under suitable assumptions, we develop an approximation bridge from the infinite-dimensional LP to tractable finite convex programs in which the performance of the approximation is quantified explicitly. To this end, we adopt the recent developments in two areas of … Read more

Dynamic programming algorithms, efficient solution of the LP-relaxation and approximation schemes for the Penalized Knapsack Problem

We consider the 0-1 Penalized Knapsack Problem (PKP). Each item has a profit, a weight and a penalty and the goal is to maximize the sum of the profits minus the greatest penalty value of the items included in a solution. We propose an exact approach relying on a procedure which narrows the relevant range … Read more