Computational and Economic Limitations of Dispatch Operations in the Next-Generation Power Grid

We study the interactions between computational and economic performance of dispatch operations under highly dynamic environments. In particular, we discuss the need for extending the forecast horizon of the dispatch formulation in order to anticipate steep variations of renewable power and highly elastic loads. We present computational strategies to solve the increasingly larger optimization problems … Read more

Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds

We consider the problem of dynamic portfolio optimization in a discrete-time, finite-horizon setting. Our general model considers risk aversion, portfolio constraints (e.g., no short positions), return predictability, and transaction costs. This problem is naturally formulated as a stochastic dynamic program. Unfortunately, with non-zero transaction costs, the dimension of the state space is at least as … Read more

Aircraft landing problems with aircraft classes

This paper focuses on the aircraft landing problem that is to assign landing times to aircraft approaching the airport under consideration. Each aircraft’s landing time must be in a time interval encompassing a target landing time. If the actual landing time deviates from the target landing time additional costs occur which depend on the amount … Read more

Robust Markov Decision Processes

Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic environments. However, the solutions of MDPs are of limited practical use due to their sensitivity to distributional model parameters, which are typically unknown and have to be estimated by the decision maker. To counter the detrimental effects of estimation errors, we consider … Read more

Risk-Averse Dynamic Programming for Markov Decision Processes

We introduce the concept of a Markov risk measure and we use it to formulate risk-averse control problems for two Markov decision models: a finite horizon model and a discounted infinite horizon model. For both models we derive risk-averse dynamic programming equations and a value iteration method. For the infinite horizon problem we also develop … Read more

Decomposition of large-scale stochastic optimal control problems

In this paper, we present an Uzawa-based heuristic that is adapted to some type of stochastic optimal control problems. More precisely, we consider dynamical systems that can be divided into small-scale independent subsystems, though linked through a static almost sure coupling constraint at each time step. This type of problem is common in production/portfolio management … Read more

Risk averse feasible policies for large-scale multistage stochastic linear programs

We consider risk-averse formulations of stochastic linear programs having a structure that is common in real-life applications. Specifically, the optimization problem corresponds to controlling over a certain horizon a system whose dynamics is given by a transition equation depending affinely on an interstage dependent stochastic process. We put in place a rolling-horizon time consistent policy. … Read more

Optimal Geometric Partitions, Covers and K-Centers

In this paper we present some new, practical, geometric optimization techniques for computing polygon partitions, 1D and 2D point, interval, square and rectangle covers, as well as 1D and 2D interval and rectangle K-centers. All the techniques we present have immediate applications to several cost optimization and facility location problems which are quite common in … Read more

Locating Restricted Facilities on Binary Maps

In this paper we consider several facility location problems with applications to cost and social welfare optimization, when the area map is encoded as a binary (0,1) mxn matrix. We present algorithmic solutions for all the problems. Some cases are too particular to be used in practical situations, but they are at least a starting … Read more

Inferring Company Structure from Limited Available Information

In this paper we present several algorithmic techniques for inferring the structure of a company when only a limited amount of information is available. We consider problems with two types of inputs: the number of pairs of employees with a given property and restricted information about the hierarchical structure of the company. We provide dynamic … Read more