A novel elitist multiobjective optimization algorithm: multiobjective extremal optimization

Recently, a general-purpose local-search heuristic method called Extremal Optimization (EO) has been successfully applied to some NP-hard combinatorial optimization problems. This paper presents an investigation on EO with its application in multiobjective optimization and proposes a new novel elitist multiobjective algorithm, called Multiobjective Extremal Optimization (MOEO). In order to extend EO to solve the multiobjective … Read more

Multi-objective branch-and-bound. Application to the bi-objective spanning tree problem.

This paper focuses on a multi-objective derivation of branch-and-bound procedures. Such a procedure aims to provide the set of Pareto optimal solutions of a multi-objective combinatorial optimization problem. Unlike previous works on this issue, the bounding is performed here via a set of points rather than a single ideal point. The main idea is that … Read more

A new adaptive algorithm for linear multiobjective programming problems

In this paper, we present a new adaptive algorithm for defining the solution set of a multiobjective linear programming problem, where the decision variables are upper and lower bounded, using the direct support method. The principle particularitie of this method is the fact that it handles the bounds of variables such are they are initially … Read more

An Adaptive Primal-Dual Warm-Start Technique for Quadratic Multiobjective Optimization

We present a new primal-dual algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Results of this algorithm when applied on a three-criteria real-world power plant optimization problem are reported, thereby illustrating the feasibility of … Read more

The Effects of Adding Objectives to an Optimization Problem on the Solution Set

Suppose that for a given optimisation problem (which might be multicriteria problem or a single-criteron problem), an additional objective function is introduced. How does the the set of solutions, i.~e.\ the set of efficient points change when instead of the old problem the new multicriteria problem is considered? How does the set of properly efficient … Read more

The Efficient Outcome Set of a Bi-criteria Linear Programming and Application

We study the efficient outcome set $Y_E$ of a bi-criteria linear programming problem $(BP)$ and present a quite simple algorithm for generating all extreme points of $Y_E$. Application to optimization a scalar function $h(x)$ over the efficient set of $(BP)$ in case of $h$ which is a convex and dependent on the criteria is considered. … Read more

A Note on Multiobjective Optimization and Complementarity Constraints

We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding an optimal representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise … Read more

Transposition theorems and qualification-free optimality conditions

New theorems of the alternative for polynomial constraints (based on the Positivstellensatz from real algebraic geometry) and for linear constraints (generalizing the transposition theorems of Motzkin and Tucker) are proved. Based on these, two Karush-John optimality conditions — holding without any constraint qualification — are proved for single- or multi-objective constrained optimization problems. The first … Read more

An Improved Algorithm for Biobjective Integer Programs

A parametric algorithm for identifying the Pareto set of a biobjective integer program is proposed. The algorithm is based on the weighted Chebyshev (Tchebycheff) scalarization, and its running time is asymptotically optimal. A number of extensions are described, including: a technique for handling weakly dominated outcomes, a Pareto set approximation scheme, and an interactive version … Read more

An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems

In multicriteria optimization, several objective functions, conflicting with each other, have to be minimized simultaneously. We propose a new efficient method for approximating the solution set of a multiobjective programming problem, where the objective functions involved are arbitary convex functions and the set of feasible points is convex. The method is based on generating warm-start … Read more