The Core of Network Problems with Quotas
This paper proves the existence of non-empty cores for directed network and two-sided network problems with quotas. Article Download View The Core of Network Problems with Quotas
This paper proves the existence of non-empty cores for directed network and two-sided network problems with quotas. Article Download View The Core of Network Problems with Quotas
Response surface methods show promising results for global optimization of costly non convex objective functions, i.e. the problem of finding the global minimum when there are several local minima and each function value takes considerable CPU time to compute. Such problems often arise in industrial and financial applications, where a function value could be a … Read more
We present a simulation-based analytic center cutting plane method to solve a sample average approximation of a call center problem of minimizing staffing costs, while maintaining an acceptable level of service in multiple time periods. We establish convergence of the method when the service level functions are discrete pseudoconcave. An extensive numerical study of a … Read more
We present a general aggregation method applicable to all finite-horizon Markov decision problems. States of the MDP are aggregated into macro-states based on a pre-selected collection of “distinguished” states which serve as entry points into macro-states. The resulting macro-problem is also an MDP, whose solution approximates an optimal solution to the original problem. The aggregation … Read more
In this paper we investigate the properties of the sampled version of the fictitious play algorithm, familiar from game theory, for games with identical payoffs, and propose a heuristic based on fictitious play as a solution procedure for discrete optimization problems of the form $\max\{u(y):y=(y^1,\ldots,y^n)\in\setY^1\times\cdots\times\setY^n\}$, i.e., in which the feasible region is a Cartesian product … Read more
In this paper we provide sufficient conditions for the existence of pair-wise envy free and stable matchings for two-sided systems with techniques. Article Download View Pair-wise envy free and stable matchings for two-sided systems with techniques
Let $I=(g_1,…, g_n)$ be a zero-dimensional ideal of $ \R[x_1,…,x_n]$ such that its associated set $G$ of polynomial equations $g_i(x)=0$ for all $i=1,…,n$, is in triangular form. By introducing multivariate Newton sums we provide a numerical characterization of polynomials in the radical ideal of $I$. We also provide a necessary and sufficient (numerical) condition for … Read more
In multicriteria optimization, several objective functions, conflicting with each other, have to be minimized simultaneously. We propose a new efficient method for approximating the solution set of a multiobjective programming problem, where the objective functions involved are arbitary convex functions and the set of feasible points is convex. The method is based on generating warm-start … Read more
A sufficient condition is provided for the existence of stable matchings for three sided systems. Article Download View Stable Matchings for Three-Sided Systems
We describe a complete solution of the linear-quaratic control problem with the linear term in the objective function on a semiinfinite interval. This problem has important applications to calculation of Nesterov-Todd and other primal-dual directions in infinite-dimensional setting. Citation Technical report, University of Notre Dame, December, 2003 Article Download View Linear-quadratic control problem with a … Read more