Nonserial dynamic programming and local decomposition algorithms in discrete programming

One of perspective ways to exploit sparsity in the dependency graph of an optimization problem as J.N. Hooker stressed is nonserial dynamic programming (NSDP) which allows to compute solution in stages, each of them uses results from previous stages. The class of discrete optimization problems with the block-tree-structure matrix of constraints is considered. Nonserial dynamic … Read more

New solution approaches to the general single machine earliness-tardiness problem

This paper addresses the general single-machine earliness-tardiness problem with distinct release dates, due dates, and unit costs. The aim of this research is to obtain an exact nonpreemptive solution in which machine idle time is allowed. In a hybrid approach, we formulate and then solve the problem using dynamic programming (DP) while incorporating techniques from … Read more

A pricing problem under Monge property

We study a pricing problem where buyers with non-uniform demand purchase one of many items. Each buyer has a known benefit for each item and purchases the item that gives the largest utility, which is defined to be the difference between the benefit and the price of the item. The optimization problem is to decide … Read more

The Effects of Adding Objectives to an Optimization Problem on the Solution Set

Suppose that for a given optimisation problem (which might be multicriteria problem or a single-criteron problem), an additional objective function is introduced. How does the the set of solutions, i.~e.\ the set of efficient points change when instead of the old problem the new multicriteria problem is considered? How does the set of properly efficient … Read more

Existence of Equilibrium for Integer Allocation Problems

In this paper we show that if all agents are equipped with discrete concave production functions, then a feasible price allocation pair is a market equilibrium if and only if it solves a linear programming problem, similar to, but perhaps simpler than the one invoked in Yang (2001). Using this result, but assuming discrete concave … Read more

The Efficient Outcome Set of a Bi-criteria Linear Programming and Application

We study the efficient outcome set $Y_E$ of a bi-criteria linear programming problem $(BP)$ and present a quite simple algorithm for generating all extreme points of $Y_E$. Application to optimization a scalar function $h(x)$ over the efficient set of $(BP)$ in case of $h$ which is a convex and dependent on the criteria is considered. … Read more

A Note on Multiobjective Optimization and Complementarity Constraints

We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding an optimal representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise … Read more

Temporal difference learning with kernels for pricing american-style options

We propose in this paper to study the problem of estimating the cost-to-go function for an infinite-horizon discounted Markov chain with possibly continuous state space. For implementation purposes, the state space is typically discretized. As soon as the dimension of the state space becomes large, the computation is no more practicable, a phenomenon referred to … Read more

Optimal Information Monitoring Under a Politeness Constraint

We describe scheduling algorithms for monitoring an information source whose contents change at times modeled by a nonhomogeneous Poisson process. In a given time period of length T, we enforce a politeness constraint that we may only probe the source at most n times. This constraint, along with an optional constraint that no two probes … Read more

Transposition theorems and qualification-free optimality conditions

New theorems of the alternative for polynomial constraints (based on the Positivstellensatz from real algebraic geometry) and for linear constraints (generalizing the transposition theorems of Motzkin and Tucker) are proved. Based on these, two Karush-John optimality conditions — holding without any constraint qualification — are proved for single- or multi-objective constrained optimization problems. The first … Read more