Data-Driven Chance Constrained Programs over Wasserstein Balls

We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative … Read more

The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

Randomization refers to the process of taking decisions randomly according to the outcome of an independent randomization device such as a dice or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, where deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has … Read more

On Distributionally Robust Chance Constrained Programs with Wasserstein Distance

This paper studies a distributionally robust chance constrained program (DRCCP) with Wasserstein ambiguity set, where the uncertain constraints should be satisfied with a probability at least a given threshold for all the probability distributions of the uncertain parameters within a chosen Wasserstein distance from an empirical distribution. In this work, we investigate equivalent reformulations and … Read more

On the heavy-tail behavior of the distributionally robust newsvendor

Since the seminal work of Scarf (1958) [A min-max solution of an inventory problem, Studies in the Mathematical Theory of Inventory and Production, pages 201-209] on the newsvendor problem with ambiguity in the demand distribution, there has been a growing interest in the study of the distributionally robust newsvendor problem. The optimal order quantity is … Read more

Piecewise constant decision rules via branch-and-bound based scenario detection for integer adjustable robust optimization

Multi-stage problems with uncertain parameters and integer decisions variables are among the most difficult applications of robust optimization (RO). The challenge in these problems is to find optimal here-and-now decisions, taking into account that the wait-and-see decisions have to adapt to the revealed values of the uncertain parameters. Postek and den Hertog (2016) and Bertsimas … Read more

Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator

We introduce a distributionally robust maximum likelihood estimation model with a Wasserstein ambiguity set to infer the inverse covariance matrix of a p-dimensional Gaussian random vector from n independent samples. The proposed model minimizes the worst case (maximum) of Stein’s loss across all normal reference distributions within a prescribed Wasserstein distance from the normal distribution … Read more

Distributionally robust optimization with polynomial densities: theory, models and algorithms

In distributionally robust optimization the probability distribution of the uncertain problem parameters is itself uncertain, and a fictitious adversary, e.g., nature, chooses the worst distribution from within a known ambiguity set. A common shortcoming of most existing distributionally robust optimization models is that their ambiguity sets contain pathological discrete distribution that give nature too much … Read more

Robust-to-Dynamics Optimization

A robust-to-dynamics optimization (RDO) problem} is an optimization problem specified by two pieces of input: (i) a mathematical program (an objective function $f:\mathbb{R}^n\rightarrow\mathbb{R}$ and a feasible set $\Omega\subseteq\mathbb{R}^n$), and (ii) a dynamical system (a map $g:\mathbb{R}^n\rightarrow\mathbb{R}^n$). Its goal is to minimize $f$ over the set $\mathcal{S}\subseteq\Omega$ of initial conditions that forever remain in $\Omega$ under … Read more

Shortfall Risk Models When Information of Loss Function Is Incomplete

Utility-based shortfall risk measure (SR) has received increasing attentions over the past few years for its potential to quantify more effectively the risk of large losses than conditional value at risk. In this paper we consider the case that the true loss function is unavailable either because it is difficult to be identified or the … Read more

Monitoring With Limited Information

We consider a system with an evolving state that can be stopped at any time by a decision maker (DM), yielding a state-dependent reward. The DM does not observe the state except for a limited number of monitoring times, which he must choose, in conjunction with a suitable stopping policy, to maximize his reward. Dealing … Read more