Strictly and Γ-Robust Counterparts of Electricity Market Models: Perfect Competition and Nash-Cournot Equilibria

This paper mainly studies two topics: linear complementarity problems for modeling electricity market equilibria and optimization under uncertainty. We consider both perfectly competitive and Nash–Cournot models of electricity markets and study their robustifications using strict robustness and the Γ-approach. For three out of the four combinations of economic competition and robustification, we derive algorithmically tractable … Read more

Data-Driven Distributionally Robust Chance-Constrained Optimization with Wasserstein Metric

We study distributionally robust chance-constrained programming (DRCCP) optimization problems with data-driven Wasserstein ambiguity sets. The proposed algorithmic and reformulation framework applies to distributionally robust optimization problems subjected to individual as well as joint chance constraints, with random right-hand side and technology vector, and under two types of uncertainties, called uncertain probabilities and continuum of realizations. … Read more

On the Optimality of Affine Policies for Budgeted Uncertainty Sets

In this paper, we study the performance of affine policies for two-stage adjustable robust optimization problem with uncertain right hand side belonging to a budgeted uncertainty set. This is an important class of uncertainty sets widely used in practice where we can specify a budget on the adversarial deviations of the uncertain parameters from the … Read more

Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective

In this paper, we focus on a subclass of quadratic optimization problems, that is, disjoint bilinear optimization problems. We first show that disjoint bilinear optimization problems can be cast as two-stage robust linear optimization problems with fixed-recourse and right-hand-side uncertainty, which enables us to apply robust optimization techniques to solve the resulting problems. To this … Read more

Tractable approximation of hard uncertain optimization problems

In many optimization problems uncertain parameters appear in a convex way, which is problematic as common techniques can only handle concave uncertainty. In this paper, we provide a systematic way to construct conservative approximations to such problems. Specifically, we reformulate the original problem as an adjustable robust optimization problem in which the nonlinearity of the … Read more

Data-Driven Chance Constrained Programs over Wasserstein Balls

We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative … Read more

The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

Randomization refers to the process of taking decisions randomly according to the outcome of an independent randomization device such as a dice or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, where deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has … Read more

On Distributionally Robust Chance Constrained Programs with Wasserstein Distance

This paper studies a distributionally robust chance constrained program (DRCCP) with Wasserstein ambiguity set, where the uncertain constraints should be satisfied with a probability at least a given threshold for all the probability distributions of the uncertain parameters within a chosen Wasserstein distance from an empirical distribution. In this work, we investigate equivalent reformulations and … Read more

On the heavy-tail behavior of the distributionally robust newsvendor

Since the seminal work of Scarf (1958) [A min-max solution of an inventory problem, Studies in the Mathematical Theory of Inventory and Production, pages 201-209] on the newsvendor problem with ambiguity in the demand distribution, there has been a growing interest in the study of the distributionally robust newsvendor problem. The optimal order quantity is … Read more

Piecewise constant decision rules via branch-and-bound based scenario detection for integer adjustable robust optimization

Multi-stage problems with uncertain parameters and integer decisions variables are among the most difficult applications of robust optimization (RO). The challenge in these problems is to find optimal here-and-now decisions, taking into account that the wait-and-see decisions have to adapt to the revealed values of the uncertain parameters. Postek and den Hertog (2016) and Bertsimas … Read more