Monitoring With Limited Information

We consider a system with an evolving state that can be stopped at any time by a decision maker (DM), yielding a state-dependent reward. The DM does not observe the state except for a limited number of monitoring times, which he must choose, in conjunction with a suitable stopping policy, to maximize his reward. Dealing … Read more

An Active Set Algorithm for Robust Combinatorial Optimization Based on Separation Oracles

We address combinatorial optimization problems with uncertain coefficients varying over ellipsoidal uncertainty sets. The robust counterpart of such a problem can be rewritten as a second-oder cone program (SOCP) with integrality constraints. We propose a branch-and-bound algorithm where dual bounds are computed by means of an active set algorithm. The latter is applied to the … Read more

Robust Principal Component Analysis using Facial Reduction

We study algorithms for robust principal component analysis (RPCA) for a partially observed data matrix. The aim is to recover the data matrix as a sum of a low-rank matrix and a sparse matrix so as to eliminate erratic noise (outliers). This problem is known to be NP-hard in general. A classical way to solve … Read more

Data-DrivenWater Allocation under Climate Uncertainty: A Distributionally Robust Approach

This paper investigates the application of techniques from distributionally robust optimization (DRO) to water allocation under future uncertainty. Specifically, we look at a rapidly-developing area of Tucson, Arizona. Tucson, like many arid and semi-arid regions around the world, faces considerable uncertainty in its ability to provide water for its citizens in the future. The main … Read more

Dual approach for two-stage robust nonlinear optimization

Adjustable robust minimization problems in which the adjustable variables appear in a convex way are difficult to solve. For example, if we substitute linear decision rules for the adjustable variables, then the model becomes convex in the uncertain parameters, whereas for computational tractability we need concavity in the uncertain parameters. In this paper we reformulate … Read more

Models and algorithms for the robust resource constrained shortest path problem

We study the robust resource constrained shortest path problem (RCSPP) under uncertainty in cost and multiple resource consumption. Contrary to the deterministic RCSPP where the cost and the consumption of resources on an arc are known and fixed, the robust RCSPP models the case where both the cost and the resource consumption are random, and … Read more

A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty

We focus on a problem of locating recharging stations in one-way station based electric car sharing systems which operate under demand uncertainty. We model this problem as a mixed integer stochastic program and develop a Benders decomposition algorithm based on this formulation. We integrate a stabilization procedure to our algorithm and conduct a large-scale experimental … Read more

The robust vehicle routing problem with time windows: compact formulation and branch-price-and-cut method

We address the robust vehicle routing problem with time windows (RVRPTW) under customer demand and travel time uncertainties. As presented thus far in the literature, robust counterparts of standard formulations have challenged general-purpose optimization solvers and specialized branch-and-cut methods. Hence, optimal solutions have been reported for small-scale instances only. Additionally, although the most successful methods … Read more

Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming

In this tutorial we discuss several aspects of modeling and solving multistage stochastic programming problems. In particular we discuss distributionally robust and risk averse approaches to multistage stochastic programming, and the involved concept of time consistency. This tutorial is aimed at presenting a certain point of view of multistage stochastic programming, and can be viewed … Read more

Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to … Read more