Distributionally Robust Optimization with Matrix Moment Constraints: Lagrange Duality and Cutting Plane Methods

A key step in solving minimax distributionally robust optimization (DRO) problems is to reformulate the inner maximization w.r.t. probability measure as a semiinfinite programming problem through Lagrange dual. Slater type conditions have been widely used for zero dual gap when the ambiguity set is defined through moments. In this paper, we investigate effective ways for … Read more

Risk-Averse Two-Stage Stochastic Program with Distributional Ambiguity

In this paper, we develop a risk-averse two-stage stochastic program (RTSP) which explicitly incorporates the distributional ambiguity covering both discrete and continuous distributions. Starting from a set of historical data samples, we construct a confidence set for the ambiguous probability distribution through nonparametric statistical estimation of its density function. We then formulate RTSP from the … Read more

Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of … Read more

Robust nonlinear optimization via the dual

Robust nonlinear optimization is not as well developed as the linear case, and limited in the constraints and uncertainty sets it can handle. In this work we extend the scope of robust optimization by showing how to solve a large class of robust nonlinear optimization problems. The fascinating and appealing property of our approach is … Read more

K-Adaptability in Two-Stage Distributionally Robust Binary Programming

We propose to approximate two-stage distributionally robust programs with binary recourse decisions by their associated K-adaptability problems, which pre-select K candidate second-stage policies here-and-now and implement the best of these policies once the uncertain parameters have been observed. We analyze the approximation quality and the computational complexity of the K-adaptability problem, and we derive explicit … Read more

Robust optimization based EV charging

With the introduction of new technologies like electric vehicles and smart grids the operation and planning of power systems are subject to major changes. These technologies can bring various ftexibilities to different entities involved in decision making. This paper proposes a robust optimization based method to optimal charging/discharging of electric vehicles conĀ­ sidering the electricity … Read more

Stochastic versus Robust Optimization for a Transportation Problem

In this paper we consider a transportation problem under uncertainty related to gypsum replenishment for a cement producer. The problem is to determine the number of vehicles to book at the beginning of each week to replenish gypsum at all the cement factories of the producer in order to minimize the total cost, given by … Read more

A Semi-Infinite Programming Approach for Distributionally Robust Reward-Risk Ratio Optimization with Matrix Moments Constraints

Reward-risk ratio optimization is an important mathematical approach in finance. In this paper, we revisit the model by considering a situation where an investor does not have complete information on the distribution of the underlying uncertainty and consequently a robust action is taken against the risk arising from ambiguity of the true distribution. We propose … Read more

Single-Commodity Robust Network Design with Finite and Hose Demand Sets

We study a single-commodity Robust Network Design problem (sRND) defined on an undirected graph. Our goal is to determine minimum cost capacities such that any traffic demand from a given uncertainty set can be satisfied by a feasible single-commodity flow. We consider two ways of representing the uncertainty set, either as a finite list of … Read more

Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic Projection

We introduce a novel scheme based on a blending of Fourier-Motzkin elimination (FME) and adjustable robust optimization techniques to compute the maximum volume inscribed ellipsoid (MVE) in a polytopic projection. It is well-known that deriving an explicit description of a projected polytope is NP-hard. Our approach does not require an explicit description of the projection, … Read more