Confidence Region for Distributed Stochastic Optimization Problem via Stochastic Gradient Tracking Method

Since stochastic approximation (SA) based algorithms are easy to implement and need less memory, they are very popular in distributed stochastic optimization problems. Many works have focused on the consistency of the objective values and the iterates returned by the SA based algorithms. It is of fundamental interest to know how to quantify the uncertainty … Read more

A solution algorithm for chance-constrained problems with integer second-stage recourse decisions

We study a class of chance-constrained two-stage stochastic optimization problems where the second-stage recourse decisions belong to mixed-integer convex sets. Due to the nonconvexity of the second-stage feasible sets, standard decomposition approaches cannot be applied. We develop a provably convergent branch-and-cut scheme that iteratively generates valid inequalities for the convex hull of the second-stage feasible … Read more

Dual SDDP for risk-averse multistage stochastic programs

Risk-averse multistage stochastic programs appear in multiple areas and are challenging to solve. Stochastic Dual Dynamic Programming (SDDP) is a well-known tool to address such problems under time-independence assumptions. We show how to derive a dual formulation for these problems and apply an SDDP algorithm, leading to converging and deterministic upper bounds for risk-averse problems. … Read more

Nash Bargaining Partitioning in Decentralized Portfolio Management

In the context of decentralized portfolio management, understanding how to distribute a fixed budget among decentralized intermediaries is a relevant question for financial investors. We consider the Nash bargaining partitioning for a class of decentralized investment problems, where intermediaries are in charge of the portfolio construction in heterogeneous local markets and act as risk/disutility minimizers. … Read more

Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Function Subject to Deterministic Nonlinear Equality Constraints

An algorithm is proposed, analyzed, and tested experimentally for solving stochastic optimization problems in which the decision variables are constrained to satisfy equations defined by deterministic, smooth, and nonlinear functions. It is assumed that constraint function and derivative values can be computed, but that only stochastic approximations are available for the objective function and its … Read more

Solving the Home Service Assignment, Routing, and Appointment Scheduling (H-SARA) problem with Uncertainties

The Home Service Assignment, Routing, and Appointment scheduling (H-SARA) problem integrates the strategical fleet-sizing, tactical assignment, operational vehicle routing and scheduling subproblems at different decision levels, with a single period planning horizon and uncertainty (stochasticity) from the service duration, travel time, and customer cancellation rate. We propose a two-stage stochastic mixed-integer linear programming model for … Read more

Practicable Robust Stochastic Optimization under Divergence Measures

We seek to provide practicable approximations of the two-stage robust stochastic optimization (RSO) model when its ambiguity set is constructed with an f-divergence radius. These models are known to be numerically challenging to various degrees, depending on the choice of the f-divergence function. The numerical challenges are even more pronounced under mixed-integer rst-stage decisions. In … Read more

New Valid Inequalities and Formulation for the Static Chance-constrained Lot-Sizing Problem

We study the static chance-constrained lot sizing problem, in which production decisions over a planning horizon are made before knowing random future demands, and the backlog and inventory variables are then determined by the demand realizations. The chance constraint imposes a service level constraint requiring that the probability that any backlogging is required should be … Read more

A Homogeneous Predictor-Corrector Algorithm for Stochastic Nonsymmetric Convex Conic Optimization With Discrete Support

We consider a stochastic convex optimization problem over nonsymmetric cones with discrete support. This class of optimization problems has not been studied yet. By using a logarithmically homogeneous self-concordant barrier function, we present a homogeneous predictor-corrector interior-point algorithm for solving stochastic nonsymmetric conic optimization problems. We also derive an iteration bound for the proposed algorithm. … Read more

Barrier Methods Based on Jordan-Hilbert Algebras for Stochastic Optimization in Spin Factors

We present decomposition logarithmic-barrier interior-point methods based on unital Jordan-Hilbert algebras for infinite-dimensional stochastic second-order cone programming problems in spin factors. The results show that the iteration complexity of the proposed algorithms is independent on the choice of Hilbert spaces from which the underlying spin factors are formed, and so it coincides with the best … Read more